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a b s t r a c t

Quadratic nonlinear equations of a piezoelectric element under the assumptions of 1D vibration and
weak nonlinearity are derived by the perturbation theory. It is shown that the nonlinear response can
be represented by controlled sources that are added to the classical hexapole used to model piezoelectric
ultrasonic transducers. As a consequence, equivalent electrical circuits can be used to predict the nonlin-
ear response of a transducer taking into account the acoustic loads on the rear and front faces. A gener-
alisation of nonlinear equivalent electrical circuits to cases including passive layers and propagation
media is then proposed. Experimental results, in terms of second harmonic generation, on a coupled res-
onator are compared to theoretical calculations from the proposed model.
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1. Introduction

The study of nonlinear properties of materials has become an
important topic within the scientific community. The reason is that
nonlinear parameters can provide additional information of inter-
est on the status of these materials, such as water content [1] or
state of fatigue [2], [3]. In this last field, authors have used the fact
that the nonlinear parameter, associated to harmonic generation, is
a sensitive indicator of the state of damage of a material. One of the

issues of Non-Destructive Evaluation (NDE) is then to characterize
the life time of the material before the onset of significant defects.

However, as nonlinear effects in solids can be very low com-
pared to linear phenomena, the measurements can easily be dis-
turbed by the existence of external sources of nonlinearity.
Several NDE measurement methods are based on the spectral mod-
ification of an acoustic wave propagating through a sample under
test. External nonlinearities can come from the electrical set-up
and/or from the transducers used for emitting or receiving the
ultrasonic waves. If the effect of the electronics can be reduced
by the use of an adapted filtering stage, the transducers can be a
recurrent problem. Thus, authors [2,4] have shown that, in the
range of intensities (strain and stress in the transducer respectively
of the order of 10�5 and 106 MPa) commonly used for NDE applica-
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tions, these nonlinearities are competing with those produced by
the propagation medium and can severely affect the accuracy of
nonlinear measurements.

The aim of this work is the modelling of a nonlinear instrumen-
tation chain in the context of a weak nonlinearity. In this study,
nonlinear equivalent electrical circuits are developed from a classi-
cal model [5] in order to obtain a tool allowing nonlinear acoustic,
electric and piezoelectric elements to be taken into account. Due to
its anisotropy, the global characterization of the nonlinear proper-
ties of the piezoceramic constituting the active element of the
transducer can become a very complex problem involving a large
number of nonlinear parameters and high order constants [6].
However, in many applications, the ultrasonic transducer includ-
ing, in addition to the piezoelectric element, a backing and a
matching layer operates in a onedimensional mode, generally the
thickness-mode or the length-extensional mode. In these cases,
previous experimental results [7–9], have shown that the nonlin-
ear behavior of the piezoelectric element can be related to one or
two nonlinear parameters expressing the electromechanical and
the mechanical origins of the intrinsic nonlinearity in the first-or-
der approximation. In this study, the length-extensional mode is
presented in order for realistic nonlinear parameters extracted
from experimental results concerning PZT ceramics [9] to be
introduced.

2. General statements

Due to the weak nonlinearity assumption, the constitutive
equations of the piezoelectric element will be developed up to qua-
dratic terms only. Besides, as it has also been mentioned, most of
the transducers operate in a onedimensional mode. The purpose
of this section is to expose the usefull constitutive equations gov-
erning such onedimensional models. For example, in the case of
the length-extensional geometry, the usefull relations, in the first
nonlinear approximation, between the displacement u along the
z-axis of a piezoelectric rod, the first Piola–Kirchhoff stress T, the
electrical field E and the electrical displacement D are formally [7]:

@u
@z
¼ sT þ gDþ s0

2
T2 � aDT � c

2
D2

E ¼ bD� gT þ a
2

T2 þ b0

2
D2 þ cDT

ð1Þ

where s, g and b are respectively the compliance, piezoelectric and
inverse of permittivity second-order constants. The third-order con-
stants s

0
and b

0
express respectively second-order elastic and dielec-

tric effects whereas a and c are related to an electromechanical
nonlinearity. According to [10], second-order dielectric effects can
be ignored. Besides, as D does not depend on space in the quasi-sta-
tic approximation of Maxwell’s law:

@D
@z
¼ 0 ð2Þ

the constant c plays no role in the dynamic law which provides the
following equation between the local acceleration and the first Pio-
la–Kirchhoff stress – q being the reference mass density:

q
@2u
@t2 ¼

@

@z
T ð3Þ

In addition, previous experimental results have confirmed [9] the
predominance of the mechanical nonlinearity associated to the con-
stant s

0
and of the electromechanical nonlinearity associated to the

constant a in the length-extensional mode. The constant c can then
also be ignored in a first approach. Thus, the usefull constitutive
relationships in this geometry can be reduced to:

@u
@z
¼ sT þ gDþ s0

2
T2 � aDT

E ¼ bD� gT þ a
2

T2
ð4Þ

The hypothesis of a weak nonlinearity allows nonlinearity to be
considered as a perturbation of linear fields. For each quantity u,
E, T and D involved in (Eq. (4)), the general solution of the nonlinear
problem is searched as respective sums:

u ¼
X1
i¼0

ui; E ¼
X1
i¼0

Ei; T ¼
X1
i¼0

Ti and D ¼
X1
i¼0

Di

according to the method of the little parameter [11]. In the previous
expansion, the subscript i = 0 represents the solution of the linear
problem and the subscript i P 1 represents the solution calculated
at the i P 1 order of nonlinearity by successive approximations
[11]. Note that this method supposes that each quantity at the order
i + 1 is small compared to the respective one at the order i, which
implies, on one hand, that linear amplitudes are small enough
and, on the other hand, an absence of internal resonance. In this
work, the solution of the nonlinear problem will be approached at
the first-order of nonlinearity only. The linear problem, associated
to the zero-order quantities, will be first solved (Section 3). This
solution will then be used to solve the problem associated to the
first-order quantities (Section 4).

3. Linear modelling: impedance matrix

In this section, the geometry and the physical quantities being
defined, the classical solution [12] of the linear problem associated
to the zero-order quantities is exposed in terms of matrix relations
which will be used by following. The constitutive equations are
those of (Eq. (4)) reduced to linear terms:

@u0

@z
¼ sT0 þ gD0

E0 ¼ bD0 � gT0

ð5Þ

The combination of (Eq. (5)) with the dynamic law (Eq. (3)) and the
Maxwell-law (Eq. (2)) leads to the homogeneous wave equation:

q
@2u0

@t2 �
1
s
@2u0

@z2 ¼ 0 ð6Þ

The piezoelectric rod is defined by its length 2a and a cross-section
area R = hd with h,d� a (Fig. 1). It is supposed to be driven by a
voltage applied at its ends z = ±a.

The particle velocity v0(±a, t), the stress T0(±a, t) at each face, the
electrical current I0 – defined by I0ðtÞ ¼ R dD0

dt – and the applied volt-
age V0(t) are physical quantities which are related to each other.
The relations between these quantities can be formally described
by an hexapole H0 with two acoustical ports and an electrical port.
In the case of a passive layer, similar relations between stress and
particle velocities at each face leads to a simple quadrupolar repre-
sentation Q0 since there is no electrical port. Besides, the continuity
of stress and particle velocity at each interface imposes connec-
tions between one quadrupole and the next as well as connections
between the hexapole and each of the first quadrupoles located at
its left or right.

In case of a sinusoidal electrical excitation at an angular fre-
quency x at the connections z = ±a, V0(t) = V0exp(jxt), the particle
velocity in the piezoelectric medium can be expressed as the
sum of two waves respectively in j(xt + kz) and j (xt � k z):

v0ðz; tÞ ¼ ½Aþejkz þ A�e�jkz�ejxt ð7Þ

where k = xc is the wave number, c ¼
ffiffiffiffi
1
qs

q
being the longitudinal

wave velocity in length-extensional mode. Introducing the acousti-
cal impedance Z = qc of the piezoelectric layer and the phase term
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