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a b s t r a c t

As a non-destructive, non-invasive and non-ionizing evaluation technique for heterogeneous media, the
ultrasonic method is of major interest in industrial applications but especially in biomedical fields.
Among the unidirectionally heterogeneous media, the continuously varying media are a particular but
widespread case in natural materials. The first studies on laterally varying media were carried out by geo-
physicists on the Ocean, the atmosphere or the Earth, but the teeth, the bone, the shells and the insects
wings are also functionally graded media. Some of them can be modeled as planar structures but a lot of
them are curved media and need to be modeled as cylinders instead of plates. The present paper inves-
tigates the influence of the tubular geometry of a waveguide on the propagation of elastic waves. In this
paper, the studied structure is an anisotropic hollow cylinder with elastic properties (stiffness coefficients
cij and mass density q) functionally varying in the radial direction. An original method is proposed to find
the eigenmodes of this waveguide without using a multilayered model for the cylinder. This method is
based on the sextic Stroh’s formalism and an analytical solution, the matricant, explicitly expressed under
the Peano series expansion form. This approach has already been validated for the study of an anisotropic
laterally-graded plate (Baron et al., 2007; Baron and Naili, 2010) [6,5]. The dispersion curves obtained for
the radially-graded cylinder are compared to the dispersion curves of a corresponding laterally-graded
plate to evaluate the influence of the curvature.

Preliminary results are presented for a tube of bone in vacuum modelling the in vitro conditions of bone
strength evaluation.

� 2010 Elsevier B.V. All rights reserved.

1. Introduction

The observation of natural media and particularly of living tis-
sues is a great source of inspiration for scientists. As an example,
they develop industrial Functionally Graded Materials (FGM) in
the 80s which reproduce a characteristic observed in natural media
such as wood, bone or shells. The continuous variation of the
mechanical properties of these materials reveals interesting
mechanical behavior particularly exploited in high-technology
and biomedical applications [48,19,26]. As a consequence, the
non-destructive characterization of FGM structures became a key
issue: first, to better understand the natural mechanisms observed
and second, to guide the conception of groundbreaking FGM. Sur-
face and guided waves are significant information source in non-
destructive testing and evaluation of complex structures. A lot of
works detailed the behavior of the guided waves in isotropic or
anisotropic plates [39,23,46,3]. Also, elastic wave propagation in

cylindrical structures formed from material with lower anisotropy
than orthotropy has been the subject of numerous theoretical and
experimental investigations widely published [30,50,20]. For
anisotropic material, the complexity of the problem relies on the
fact that the boundary problem do not permit solution in cylindri-
cal functions except in some particular configurations [29].

In this work, we solve the wave equation in an anisotropic
waveguide with one-direction heterogeneity using a general meth-
od based on the sextic Stroh’s formalism [44]. It takes into account
the unidirectional continuous variation of the properties of the
waveguide without using a multilayered model. It is based on
the knowledge of an analytical solution of the wave equation, the
matricant, explicitly expressed via the Peano series expansion [6].
The accuracy of the numerical evaluation of this solution and its
validity domain are perfectly managed [4,49]. One of the advanta-
ges of knowing an analytical solution with respect to purely
numerical methods is to control all the physical parameters and
to interpret more easily the experimental data which result from
the interaction and coupling of numerous physical phenomena.

In this paper, a sample of long bone is considered as an example
of anisotropic functionally graded tube. The material is multiscale
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and the discrete variations of its microscopic properties (bone ma-
trix elasticity, micro-architecture, etc.) [9,8,41] is assumed to in-
duce continuous profiles of macroscopic properties in the radial
direction [7,16,5]. Obviously, the mechanical behavior of bone de-
pends on several parameters (microstructure, elasticity and geom-
etry). The curvature is part of them and its influence remains
unclear.

We first present the method and its setup for the cylindrical
waveguide; this method has been validated by comparing our re-
sults to the dispersion curves obtained from classical schemes on
homogeneous and functionally graded waveguides. Some advanta-
ges of the method are underlined: (i) general anisotropy may be ta-
ken into account for cylindrical structures; (ii) the influence of the
property gradient on the mechanical behavior of the waveguide
may be investigated; (iii) the influence of the curvature on the
propagation of elastic waves may be evaluated.

2. Methods

We consider an elastic tube of thickness t placed in vacuum.
The radius r varies from a0 to aq, respectively, the inner and out-

er radius of the tube (Fig. 1). The elastic cylinder is supposed to be
anisotropic and is liable to present continuously varying properties
along its radius (er-axis). These mechanical properties are repre-
sented by the stiffness tensor C ¼ CðrÞ and the mass density
q = q(r).

2.1. System equations

The momentum conservation equation associated with the con-
stitutive law of linear elasticity (Hooke’s law) gives the following
equations:

divr ¼ q @2u
@t2 ;

r ¼ 1
2 Cðgraduþ gradT uÞ;

(
ð1Þ

where u is the displacement vector and r the stress tensor.
We are seeking the solutions of wave equation for displacement

(u) and radial traction-vector (rr = r.er) expressed in the cylindri-
cal coordinates (r,h,z) with the basis {er,eh,ez}:

uðr; h; z; tÞ ¼ UðnÞðrÞ exp ı nhþ kzz�xtð Þ;
rrðr; h; z; tÞ ¼ TðnÞðrÞ exp ı nhþ kzz�xtð Þ; ð2Þ

with kz the axial wavenumber and n the circumferential
wavenumber.

We distinguish two types of waves propagating in a cylindrical
waveguide: the circumferential waves and the axial waves. The cir-
cumferential waves are the waves traveling in planes perpendicular
to the axis direction. They correspond to uz(r) = 0 ("r), kz = 0 and
n = khaq. The axial waves are the waves traveling along the axis

direction, the circumferential wavenumber is an integer
n = 0,1,2, . . .. Among the axial waves, we distinguish three types
of modes numbered with two parameters (n,m) representing the
circumferential wavenumber and the order of the branches: longi-
tudinal (L), flexural (F) and torsional (T) modes. The longitudinal
modes are axially symmetric (n = 0), they are noted L(0,m) and
sometimes called the breathing modes [3]. For the two other types
of modes, two classifications have been proposed in the literature.
Meitzler [28] and Zemanek [50], following Gazis work [14], re-
stricted the T-modes to axially symmetric circumferential funda-
mental modes T(0,m) and the modes with non-zero n are
considered as F-modes F(n,m). An other way is proposed by Nish-
ino and colleagues [34] who considered that the n-parameter of
the T-modes is not limited to zero. Consequently they can associate
‘‘their” L- and F-modes to the Lamb waves (coupled bulk longitudi-
nal and bulk shear-vertical waves) in the plate and the T-modes to
the bulk horizontal-shear waves propagating in the plate. This clas-
sification may be relevant in the case of isotropic media but it be-
comes invalid for anisotropic media for which the flexural waves
are longitudinal shear waves [14].

In this paper, only the axial waves are investigated and the usual
classification of Gazis [14] is used.

2.2. A closed-form solution: the matricant

Introducing the expression (2) in Eq. (1), we obtain the wave
equation under the form of a second-order differential equation
with non-constant coefficients. In the general case, there is no ana-
lytical solution to the problem thus formulated. The most current
methods to solve the wave equation in unidirectionally heteroge-
neous media are derived from the Thomson–Haskell method
[45,18]. These methods are appropriate for multilayered structures
[22,27,47,21]. But, for continuously varying media, these tech-
niques mean to replace the continuous profiles of properties by
step-wise functions. Thereby the studied problem becomes an
approximate one, even before the resolution step; the accuracy
of the solution as its validity domain are hard to evaluate. More-
over, the multilayered model of the functionally graded waveguide
creates some ‘‘virtual” interfaces likely to induce artefacts. Lastly,
for generally anisotropic cylinders, the solutions cannot been ex-
pressed analytically even for homogeneous layers [29,32,43].

In order to deal with the exact problem, that is to keep the con-
tinuity of the properties variation, the wave equation is written un-
der the sextic Stroh’s formalism [44] in the form of an ordinary
differential equations system with non-constant coefficients for
which an analytical solution exists: the matricant [4]. Another
method relies on the Legendre’s polynomial as explained and used
in [25,11,13,12].

2.2.1. Hamiltonian form of the wave equation
In the Fourier domain, the wave equation may be written as:

d
dr

gðrÞ ¼ 1
r

Q ðrÞgðrÞ: ð3Þ

The components of the state-vector g(r) are the three compo-
nents of the displacement and the three components of the stress
traction in the cylindrical coordinates, and the matrix Q(r) contains
all the information about the heterogeneity: it is expressed from
stiffness coefficients of the waveguide in the cylindrical coordi-
nates and from the two acoustical parameters: axial or circumfer-
ential wavenumbers (kz, or n) and the angular frequency x. The
detailed expression of Q(r) is given in Appendix A for the case of
a material with orthorhombic crystallographic symmetry but it
can be expressed for any type of anisotropy [42].Fig. 1. Geometrical configuration of the waveguide.
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