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a b s t r a c t

Clinical ultrasound images are often perceived as difficult to interpret due to image blurring and speckle
inherent in the ultrasound imaging. But the image quality can be improved by deconvolution using an
estimate of the point-spread function. However, it is difficult to obtain a sufficiently accurate estimate
of the point-spread function in vivo because of the unknown properties of the soft tissue in clinical appli-
cations. Local variations in the speed of sound and attenuation change the pulse and beam shape. These in
turn affect the point-spread function. The purpose and novelty of this paper is therefore to explore the
sensitivity of a state-of-the-art deconvolution algorithm to uncertainty in the point-spread function.
The point-spread function in our restoration algorithm is made shift invariant in the lateral dimension
but shift dependent in the axial direction, and is modelled to match a 128-element 1D linear array often
found in clinical use. We present simulated and in vitro sensitivity analyses of two-dimensional deconvo-
lution while varying six parameters on which the point-spread function depends. Uncertainty in the
ultrasound machine is analysed by varying the axial depths of lateral and elevational foci alongside
height and width of transducer elements. Sensitivity to tissue influence is investigated by varying the
speed of sound and frequency-dependent attenuation of the electro-mechanical impulse response. The
results are analysed both quantitatively and in terms of the perceived image quality. First, the assessment
of deconvolution using the logarithmic image amplitude is found to be a better indicator of the perceived
improvement in the restoration. Secondly, the two most critical parameters for two-dimensional decon-
volution are discovered to be the lateral focus and the speed of sound, because the success of deconvo-
lution is perceived primarily in terms of deblurring. We also observed similar patterns for the simulation
and in vitro experiment. Finally, we show that it is possible to restore in vivo ultrasound images using an
assumed point-spread function and hence conclude that an exact point-spread function is not necessary
for enhancing ultrasound image quality by deconvolution.

� 2008 Elsevier B.V. All rights reserved.

1. Introduction

Ultrasound scanners are widely used in medical imaging appli-
cations [1–3]. Compared to most other modalities, they are porta-
ble, cost-effective and capable of real-time operation. Ultrasound
scanners do, however, produce images which are often hard to
interpret due to the nature of the image formation process. Notice-
able effects are blurring in areas of the image which are not well
focused, and the presence of a characteristic pattern called speckle,
which results from the constructive and destructive interference of
scatterers within the range of the point-spread function (PSF) of
the ultrasonic imaging system.

Deblurring has been a keenly pursued topic in the realm of gen-
eral image signal processing. It is one of main objectives of image

restoration. The physical phenomenon of blurring is mathemati-
cally modelled as convolution, hence deblurring can be described
as deconvolution. For the process of deconvolution, two distinct
approaches have been developed depending on the availability of
prior knowledge of the point-spread function: blind and non-blind
deconvolution. Non-blind algorithms are generally more successful
than blind techniques as they make use of more prior information.
In [4–6], we proposed a novel, non-blind deconvolution algorithm
which is capable of taking into account the structure of ultrasound
speckle. However, the algorithm requires prior knowledge of the
PSF. While this can be measured in vitro or calculated from knowl-
edge of the transducer design, there is always uncertainty in vivo
because of variability in the overlying tissue through which any
scan must be performed. The main motive and novelty of this pa-
per is therefore to establish the sensitivity of the deconvolution
algorithm to variation in the assumed PSF, and consequently to
establish the feasibility of deconvolution in vivo, where the exact
PSF is unknown.
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In so doing, first we have identified key parameters of a PSF in
ultrasound imaging: they are axial depths of lateral and elevational
foci, the height and width of transducer elements in the ultrasound
imaging system, and the speed of sound and frequency-dependent
attenuation of the impulse response in soft tissue. Our experiments
involve systematic variation of these parameters. The findings
relating to sensitivity are presented qualitatively in terms of hu-
man perception and also in quantitative terms when applicable.
We show that the quantification of deconvolution using logarith-
mic image amplitudes performs better for the perceived
enhancement in the restoration. It will be also demonstrated that,
for two-dimensional deconvolution, the lateral focus and the speed
of sound are the parameters which mainly determine the deblur-
ring and subsequent speckle-reduction capabilities in our
deconvolution algorithm. They are hence the two most essential
parameters which influence the human perception of ultrasound
image enhancement. We also show that the errors associated in
these parameters of ultrasound imaging are tolerable as far as hu-
man perception is concerned and that restored images are per-
ceived better than the original B-mode ultrasound images. We
therefore point out that the exact point-spread function may not
be required to improve the quality of a clinical ultrasound image.

We briefly introduce our deconvolution method in Section 2.
Section 3 outlines the structure of the simulation, followed by a
description of the metrics quantifying the restoration in Section
4. Our findings relating to the deconvolution sensitivity on PSF
parameters are presented in Section 5 (simulation) and Section 6
(in vitro experiment). Next, we demonstrate the restoration of
in vivo ultrasound image by our algorithm in Section 7. Finally,
conclusions are drawn.

2. Non-blind ultrasound deconvolution

In this section, we begin by briefly reiterating the essential parts
of our deconvolution method. It is worth noting that our algorithm
deals with linear ultrasonic propagation and hence lacks any non-
linear capability. Although such non-linearity is present in in vivo
scans of clinical applications, our approach is still applicable to
ultrasound images when dominated by linearity. Many ultrasound
imaging systems still operate within a range in which linear acous-
tics provides an adequate description (see p. 477 in [1]). Recently,
tissue harmonic imaging has gained recognition and its clinical
value is now considered indisputable. But it imposes extra require-
ments on an imaging system. Under some circumstances, however,
fundamental imaging performs better (see p. 411 in [3]) with less
requirement on the system. Such fundamental frequency compo-
nent of diagnostic ultrasound can be enhanced further by our
deconvolution algorithm. The core structure of the methodology
is illustrated in Fig. 1. However, its complete details can be found
in previous publications [4,5].

2.1. Ultrasound image formulation

The A-lines of an ultrasound imaging system can be mathemat-
ically modelled as a Fredholm integral of the first kind [4]. Here,
the wave propagation is assumed linear. Without loss of generality,
if we adopt a discrete space-time formulation, the integral can be
further simplified using a vector–matrix notation with x as the
field of scatterers and y as the ultrasound signals

y ¼ Hx ð1Þ

H is a block diagonal matrix along the lateral and elevational
dimensions. Each block matrix maps from the axial depth dimen-
sion to the time domain at a given lateral and elevational position.
Here, multi-dimensional images are rearranged into 1D equivalents

by lexicographic orders, and hence x is a NxNyNz � 1 vector, H is a
NxNyNt � NxNyNz matrix, and y is a NxNyNt � 1 vector. Although Nt

is usually assumed to be equal to Nz, we distinguish them at this
stage to highlight the mapping from the spatial z to the temporal
t dimension achieved by the operator H.

It is worth noting that, in traditional deconvolution algorithms,
a blurring function is usually assumed to be spatially shift invari-
ant. This tends to be true along the lateral and elevational dimen-
sion of an ultrasound image, but the blurring function is
significantly shift dependent in the axial direction (i.e. with depth).
Our deconvolution algorithm is therefore designed to be capable of
dealing with the blurring operator (H) as spatially shift dependent
along the axial direction and shift invariant along the lateral and
elevational dimensions [4].

2.2. Deconvolution

Further to the discrete modelling of the Fredholm integral equa-
tion, we introduce additive noise (n) to take into account potential
measurement errors [5]

y ¼ Hxþ n ð2Þ

Our goal is therefore to estimate x from a noisy and blurred image y.
For simplicity, we denote the sizes of the vectors and the matrix as
N � 1 for x, n, and y, and N � N for H.

Our deconvolution algorithm operates in a Bayesian context.
The scatterer field (x) is estimated from the observed blurred ultra-
sound image (y) corrupted by Gaussian noise (n). Because of the ill-
posed blurring process (H) caused by finite resolution cells, a direct
inverse approach is likely to fail, hence regularisation is incorpo-
rated in a maximum a posteriori framework (see p. 314 of [7]) with
a prior on the scatterer field. Possible priors could involve assum-

Fig. 1. Diagram showing the key aspects of our deconvolution algorithm. The upper
half shows the ultrasound image model (y = Hx + n) with our interpretation
(x = Sw). The lower part is the algorithmic flow chart of the deconvolution itself.
Notation: echogenicity (S), random component (w), reflectivity function (x), linear
blurring operator (H), white Gaussian noise (n), and ultrasound image (y).
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