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a b s t r a c t

The article presents the mathematical model allowing to investigate longitudinal and flexural vibrations
of stepped flexible waveguides with transitional section without regard to various vibration modes inter-
action. The model uses original numerical-analytic calculations based on analytical solutions of the equa-
tion of waveguide steps vibrations and their continuous matching with numerical solution of the
equation of transitional section vibrations. The proposed model can be considered as an initial approxi-
mation to the solution of the problem of flexible waveguides design, which makes it possible to deter-
mine and validate effective methods of its addressing. Resonant curves of longitudinal and flexural
vibrations of two-step waveguide are traced for the given vibration frequency. Step lengths values pro-
viding simultaneous resonance of longitudinal and flexural vibrations for the given frequency are deter-
mined. Validity of the proposed model is proved by the results of finite elements method (FEM) modeling
using ANSYS� software. Application of Timoshenko’s model instead of Euler–Bernoulli’s model for
description of flexural vibrations enabled reduction of relative deviation of resonant frequencies calcu-
lated using ANSYS� from the value specified during resonant curves tracing down to negligible value
(0.17%).

� 2009 Elsevier B.V. All rights reserved.

1. Introduction

Today flexible waveguide systems for ultrasonic vibrations
transmission are found increasingly wide application in different
areas of science and technology, e.g. ultrasonic thrombolysis
[1,2], transurethral lithotripsy [3], fuel heating at low temperatures
[4], remote actuation of ultrasonic motors [5], endoscopic neuro-
surgery [6], cleaning of hardly accessible channels in technical sys-
tems, etc. Unfortunately at present there are no methods for
designing of such systems and their analysis and synthesis are
implemented by empirical approach. Flexible waveguide vibra-
tions are of complex nature and should be considered as coupled
longitudinal–flexural vibrations. Investigation of such vibrations
constitutes a sophisticated mathematical problem so primarily it
seems reasonable to consider longitudinal and flexural vibration
modes without regard to their interaction. It may be useful for
determination of effective numerical and analytical methods for
considered problem solution.

Coupled longitudinal–flexural vibrations of ultrasonic systems
have been previously regarded in the research works by Zhou
et al. [7,8] in which vibratory system consisting of a half-wave

(in relation to the longitudinal vibration mode) horn and a trans-
ducer connected to it and comprising piezoelements generating
longitudinal and flexural vibrations has been investigated. Flexural
vibrations of horn with continuous variation of the cross-sectional
area along the length are analyzed by slicing it into elementary
sections with a constant cross-section and small length [8] with
a subsequent application of the transfer matrices method. This in-
volves multiplication of a large number of matrices and consider-
able computing time consumption.

An attempt of flexible waveguides modeling has been made in
the research work by Bansevečius et al. [9] in which flexural vibra-
tions of a waveguide with a constant cross-sectional area along the
length have been considered. Unfortunately the represented re-
sults are well known from the classical theory of elastic rods vibra-
tions and cannot be generalized in the case of waveguides with
more complex law of variation of the cross-sectional area and cent-
roidal moment of inertia along the length.

The problem of the flexible waveguides modeling is also consid-
ered in the article by Gavin et al. [10] who investigated the finite-
element model of a waveguide immersed into fluid. Although the
model enables investigation of the waveguides with arbitrary
complex law of variation of the cross-sectional area and centroidal
moment of inertia along the length, it is based on some assump-
tions reducing model’s practical value. Particularly the problem is
considered to be axisymmetric providing investigation of only
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longitudinal vibrations. At the same time onset of flexural vibra-
tions significantly reduces efficiency of ultrasound transmission
along the long-length waveguides and therefore should be consid-
ered during their design.

2. Modeling technique

2.1. Waveguide design description

On the basis of empirical research the authors have determined
and patented [2] rational geometric parameters of flexible wave-
guides for ultrasonic thrombolysis providing efficient transmission
of longitudinal vibrations along the long-length waveguides (up to
900 mm) as well as such waveguides manufacturing technology.
The diagram of two-step waveguide design is shown in Fig. 1.

Waveguide consists of two cylindrical sections (steps) 1 and 2
with a constant cross-section connected by the smooth transitional
section 3 of Fourier horn type intended for reduction of stress con-
centration. Waveguide is manufactured from stainless steel rod by
plasma-electrolytic etching and attached by soldering to the
threaded joining element intended for connection of the wave-
guide with longitudinally vibrating horn.

To start with the waveguide vibration modeling it is essential to
give mathematical description of the shape of the transitional sec-
tion 3 between the steps 1 and 2. Let us suppose that the shape is
specified by the diameter values di at the uniformly distributed
points xi, i = 1, . . . , N (in the example given below N = 7). Without
limiting generality let us set coordinate origin in the input (proxi-

mal relative to the horn) cross-section of the transitional section,
i.e. suppose x1 = 0. Coordinate values xi and corresponding diame-
ter values di according to the patent [2] are given in Table 1.

The value d1 corresponds to the diameter D1 of the waveguide
step with a larger cross-sectional area (input waveguide step 1)
and dN corresponds to the diameter D2 of the step with a smaller
cross-sectional area (output step 2). Let us approximate the shape
of the transitional section 3 by the polynomial of the form
dðxÞ ¼

Pm
k¼0akxk. The curve defined by this polynomial should pass

through the specified points of the shape which is equivalent to
fulfillment of N conditions of the form d(xi) = di. Moreover condi-
tions of the smooth connection between the transitional section
and waveguide steps should be satisfied. These conditions are de-
scribed by two equations of the form d0(0) = 0 and d0(xN) = 0. Thus
in total amount N + 2 conditions should be fulfilled, i.e. polynomial
degree m is determined by equation m = N + 1. We get a0 = D1 from
the condition d(0) = D1 and a1 = 0 from the condition d0(0) = 0. For
determination of the rest coefficients of the polynomial it is neces-
sary to solve a system of N linear equations. As a result of calcula-
tion for the data given in Table 1 values of the coefficients given in
Table 2 were obtained.

2.2. Resonance conditions for flexural vibrations

2.2.1. Euler–Bernoulli’s theory
Supposing the input waveguide step 1 has the length L1, the

output step 2 has the length L2 and the transitional section 3 has
the length DL, let us determine lengths relation providing reso-
nance of flexural waveguide vibrations for the given frequency f.
For this purpose we will first consider flexural vibrations of the
transitional section. Let us denote transverse displacement

Nomenclature

c longitudinal thin-wire ultrasonic wave speed in the
waveguide material, m/s

d waveguide diameter, m
Di ith waveguide step diameter, m
E modulus of elasticity of the waveguide material, Pa
f vibration frequency, Hz
G shear modulus of the waveguide material, Pa
J centroidal moment of inertia of the waveguide

cross-section, m4

k wave number value for the longitudinal vibration mode,
m�1

Ks shape factor of the waveguide cross-section
L total waveguide length, m
Li ith waveguide step length, m
S waveguide cross-sectional area, m2

x longitudinal coordinate for the waveguide transitional
section, m

xi longitudinal coordinate for the ith waveguide step, m
DL length of the waveguide transitional section, m

a amplitude of cross-section angular displacements for
the waveguide transitional section, radian

ai amplitude of cross-section angular displacements for
the ith waveguide step, radian

g transverse displacement amplitude for the waveguide
transitional section, m

gi transverse displacement amplitude for the ith wave-
guide step, m

j wave number value for the flexural vibration mode
propagating in the waveguide transitional section, m�1

ji wave number value for the flexural vibration mode
propagating in the ith waveguide step, m�1

m Poisson’s ratio of the waveguide material
n longitudinal displacement amplitude for the waveguide

transitional section, m
ni longitudinal displacement amplitude for the ith wave-

guide step, m
q waveguide material density, kg/m3

x circular vibration frequency, Hz

Fig. 1. Design of two-step waveguide.

Table 1
Shape of the transitional section.

Coordinate x, mm 0 1 2 3 4 5 6
Diameter d, mm 2 1.89 1.62 1.33 1.13 1 0.9

Table 2
Values of the coefficients.

a2 a3 a4 a5 a6 a7 a8

�115.1 �741.2 6:2� 106 �3:5� 108 �2:0� 1010 �3:3� 1013 3:6� 1015
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