
The wavelet response as a multiscale characterization
of scattering processes at granular interfaces

Yves Le Gonidec a, Dominique Gibert b,*
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Abstract

We perform a multiscale analysis of the backscattering properties of a complex interface between water and a layer of randomly
arranged glass beads with diameter D = 1 mm. An acoustical experiment is done to record the wavelet response of the interface in a large
frequency range from k/D = 0.3 to k/D = 15. The wavelet response is a physical analog of the mathematical wavelet transform which
possesses nice properties to detect and characterize abrupt changes in signals. The experimental wavelet response allows to identify five
frequency domains corresponding to different backscattering properties of the complex interface. This puts quantitative limits to the
validity domains of the models used to represent the interface and which are flat elastic, flat visco-elastic, rough random half-space with
multiple scattering, and rough elastic from long to short wavelengths respectively. A physical explanation based on Mie scattering theory
is proposed to explain the origin of the five frequency domains identified in the wavelet response.
� 2006 Elsevier B.V. All rights reserved.
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1. Introduction

The concept of interface plays a key role in many imag-
ing methods using back-scattered waves, and most reflex-
ion techniques (e.g. seismics) are based on models where
quasi-homogeneous domains are separated by sharp inter-
faces where the physical properties of the medium change
abruptly [24]. These models are used to reproduce the data
as a superimposition of reflected echoes coming from inter-
faces whose number, position and strength are to be deter-
mined. The localisation of the interfaces needs an accurate
large-scale velocity model, also called to macro-model,

whose inversion is a highly non-linear tomography prob-
lem [32,18,6,4,19]. The parameters (i.e. compressional and
shear velocities) of the macro-model are adjusted in order
to fit with the arrival times. More sophisticated macro-
models are eventually used to account for the attenuating
visco-elastic properties of the media and the dispersion of
the body waves [29,26]. The complete tomographic image
is obtained by completing the macro-model with a small-
scale distribution of impedance contrasts representing
the interfaces producing the recorded echoes. In most
approaches, abrupt impedance contrasts are represented
by step-like functions (i.e. the Heaviside distribution)
whose amplitude is adjusted to fit with the sign and the
magnitude of the echoes [33,34]

Many situations exist where the model described above
is insufficient to correctly account for the reality, and the
sharp and step-like model may be inadequate to represent
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the interfaces in heterogeneous material. Geophysical
examples are volcanoes, the weathered subsurface [9,35],
and the shallow layers of sediments forming the seafloor
[8,3]. Ultrasonic imaging in both medical applications
and non-destructive testing (NdT) are also faced with defi-
ciencies of the step-like interface models at transitions
involving small-scale heterogeneous media like bones, fat
and composite material. A way to tackle with these difficul-
ties is to use rough-interface models where the transition
surface between homogeneous bodies with differing proper-
ties is given a rough topography [36] with possibly a fractal
geometry [31,10]. However, rough-interface modelling
does not generally consider the heterogeneous nature of
the material on both sides of the transition, and further
sophistications of the interface model would be necessary
to properly account for the complex wave phenomena
occurring in the vicinity of the interface. A number of ques-
tions then arise: In which wavelength range is the step-
like concept still valid to represent the transition between
domains of highly heterogeneous material? At which
wavelengths does the step-like model cease to be valid?
Which kind of more sophisticated models should be used
instead?

In the present study, we present and discuss experimen-
tal results designed to provide both qualitative and quanti-
tative data about the modelling of an interface formed by
the transition between water and a dense layer of randomly
arranged glass beads. The choice of glass beads ensures
that multiple scattering is likely to occur as observed in vol-
canoes and granular seafloor. Both the experiments and the
analysis are based on the wavelet-response method intro-
duced by [20] who showed that the continuous wavelet
transform obtained by convolving a signal with a family
of constant-shape wavelets [14] may be physically extended
to the wavelet response where a family of wavelets are
propagated (i.e. NOT convolved) through the medium to
be analysed. The wavelet response is equivalent to the
wavelet transform of the reflectivity distribution when the
first Born approximation is valid. Consequently, the inter-
esting properties of the wavelet transform concerning the
characterisation of abrupt changes in signals [22,12,1,2]
are retrieved in the wavelet response which may be used
to remotely analyse the multiscale structure of acoustical
interfaces [37,13,39,38,23].

This paper continues with a brief presentation of the
continuous wavelet transform and its extension to the
wavelet-response method. Then, the experimental setup is
detailed and the experimental wavelet response of the sur-
face of a thick layer of glass bead is presented. In a next
section, the wavelet response is analysed in the framework
of the singularity characterisation toolbox developed for
the continuous wavelet transform [22]. In a last section,
we discuss the wave phenomena relevant in the different
wavelength bands identified in the wavelet response of
the interface. Our physical interpretation is based on the
microscopic Mie scattering occurring in the heterogeneous
medium.

2. Analysing method: the wavelet response

The wavelet response has been introduced in details by
[21], and we only recall the main steps of its derivation
from the classical continuous wavelet transform which con-
sists in convolving a signal with a family of constant-shape
analysing wavelets [1,14]. The wavelet family is obtained by
dilating an analysing wavelet g(t),

DagðtÞ � 1
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where Da represents the dilation operator indexed by the
dilation a > 0 which is inversely proportional to the
frequency. The wavelets obtained for a dilation range
amin 6 a 6 amax have the same shape and constitute a
wavelet family spanning a wide wavelength range well-
adapted to study multiscale wave phenomena [20,21]. The
analysing wavelet must be a time-localised oscillating func-
tion with a band-pass spectrum and, at least, a zero-order
vanishing moment. For instance, the well-known Ricker
source function [17,15] frequently used in seismic modelling
is an acceptable analysing wavelet g.

The wavelet transform is obtained by convolving the
whole wavelet family with the analysed signal, s(t),

W½g; s�ðb; aÞ � ðDag � sÞðbÞ; ð2Þ

where * is the convolution operator and b is a translation
parameter. The main property needed in the present study
is the covariance of the wavelet transform which indicates
that the wavelet transform of a dilated function is the
wavelet transform of the non-dilated function rescaled on
both the a and b axes:
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When applied to an homogeneous function of degree a 2 R

such that,

sðbxÞ ¼ basðxÞ; ð4Þ
Eq. (3) simplifies into,

W½g; s�ðbb; baÞ ¼ baW½g; s�ðb; aÞ; ð5Þ
which indicates that the whole wavelet transform of a
homogeneous function can be obtained from the wavelet
transform taken at a given dilation [22]:

W½g; s�ðb; a0Þ ¼ a0

a

� �1þa

Da0=aW½g; s�ðb; aÞ; ð6Þ

where the dilation operator is understood to act on the
translation variable b only. The geometrical sense of this
equation is that the wavelet transform of a homogeneous
singularity has the appearance of a cone whose apex points
onto the singularity for a # 0+. Eq. (6) indicates that the
magnitude of the wavelet transform is /aa when sampled
along the cone lines also called the ridge functions (see
[1,2,21] for details). The Heaviside distribution H used to
represent step-like interfaces as discussed above is homoge-
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