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Abstract

The most common nonlinear equation of motion for the damped pulsation of a spherical gas bubble in an infinite body of liquid is the
Rayleigh–Plesset equation, expressed in terms of the dependency of the bubble radius on the conditions pertaining in the gas and liquid
(the so-called ‘radius frame’). However over the past few decades several important analyses have been based on a heuristically derived
small-amplitude expansion of the Rayleigh–Plesset equation which considers the bubble volume, instead of the radius, as the parameter
of interest, and for which the dissipation term is not derived from first principles. So common is the use of this equation in some fields
that the inherent differences between it and the ‘radius frame’ Rayleigh–Plesset equation are not emphasised, and it is important in com-
paring the results of the two equations to understand that they differ both in terms of damping, and in the extent to which they neglect
higher order terms. This paper highlights these differences. Furthermore, it derives a ‘volume frame’ version of the Rayleigh–Plesset
equation which contains exactly the same basic physics for dissipation, and retains terms to the same high order, as does the ‘radius
frame’ Rayleigh–Plesset equation. Use of this equation will allow like-with-like comparisons between predictions in the two frames.
� 2007 Elsevier B.V. All rights reserved.
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1. Introduction

The most popular nonlinear equation for describing the
nonlinear response of a gas bubble in liquid to a driving
pressure field is the Rayleigh–Plesset equation. This can
be derived from first principles using the bubble radius R
as the dynamic parameter (which will here be termed the
‘radius frame’ approach):
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where q0 is the unperturbed liquid density, g is the shear
viscosity of the liquid, and p1 is the liquid pressure far
from the bubble, which is here assumed to consist of a sta-

tic pressure p0 and an applied acoustic field P(t), such that
p1 = p0 + P(t) [1]. When a polytropic gas law is used to
evaluate the liquid pressure at the bubble wall (pL), and
the contributions of surface tension (r) and vapour pres-
sure (pv) are included, Eq. (1) becomes
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where R0 is the unperturbed bubble radius. It is noted that
use of the polytropic index (j) adjusts the gas stiffness for
reversible heat flow across the bubble wall, but does not de-
scribe any net thermal losses. The only dissipation present
in (2) occurs through viscous losses.

However there exist heuristic formulations based on a
form of the Rayleigh–Plesset equation in which the bubble
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volume V is used as the dynamic parameter (which will be
termed the ‘volume frame’ approach), where the damping
is not derived from first principles. Furthermore, the ‘vol-
ume frame’ form of the damped Rayleigh–Plesset equation
which is commonly quoted neglects higher order terms
which are present in the ‘radius frame’ version (2). There-
fore the two equations are not equivalent on two counts.

The predictions of the two approaches do not always
agree, and before any differences can be attributed to
another factor, it is important to ensure that one is com-
paring ‘like-with-like’. It is not immediately apparent that
this is being done, given the differences in the way dissipa-
tion is formulated, and the manner in which higher order
terms are neglected in the ‘volume frame’ form which is
widely used [2]. Therefore this study was undertaken to
derive a ‘volume frame’ form of the Rayleigh–Plesset equa-
tion where the physics describing the dissipation is identical
to that used when the Rayleigh–Plesset equation is cited in
the radius frame (2), and where the higher order terms have
not been assumed to be negligible.

This paper will proceed by using the following common
assumptions: The bubble exists in an infinite medium. The
bubble stays spherical at all times during the pulsation.
Spatially uniform conditions exist within the bubble. The
bubble radius is much smaller than the wavelength of the
driving sound field. There are no body forces acting (e.g.
gravity). Bulk viscous effects can be ignored. The density
of the surrounding fluid is much greater than that of the
internal gas. The gas content is constant.

2. Background

Of the various ‘volume frame’ equations for bubble
dynamics [3], the form given by Zabolotskaya and Soluyan
[2] has been most valuable and influential, and featured as
the starting point in several notable studies. These include
the bubble-mediated generation of difference frequencies
when bubbles are insonified by two acoustic frequencies
for a range of purposes, including bubble detection [4],
the use of bubbles to enhance parametric sonar [5,6], and
the acoustic characterization of gassy seabeds [7]. Biomed-
ical investigations which have used the ‘volume frame’
include studies of contrast agent [8] and HIFU [9]. If the
predictions of these important ‘volume frame’ studies are
to be reconciled with those obtained using the ‘radius
frame’ Rayleigh–Plesset Eq. (2), it is important to ensure
that the comparison is of ‘like-with-like’, specifically that
the equations of motion in each case contain the same
physics and the same degree of approximation. This is
the purpose of this paper.

The influential analysis of Zabolotskaya and Soluyan
[2], which underpins the majority of studies of nonlinear
bubble dynamics in the ‘volume frame’, begins with a state-
ment (not derived) of the Rayleigh equation in the volume
frame. The Rayleigh equation is the undamped form of the
Rayleigh–Plesset equation, and the volume frame descrip-
tion given by Zabolotskaya and Soluyan [2] is
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where pg is the pressure in the bubble gas (assumed to be air
in [2]). Understandably for the time, given the limited com-
puting abilities then available, Zabolotskaya and Soluyan
do not calculate output from this equation directly, but
rather proceeded to generate a small amplitude expansion
based on volume perturbations Ve(t) about an equilibrium
bubble volume V0

V ¼ V 0 þ V eðtÞ V e � V 0 ð4Þ

with an adiabatic gas law

pg ¼ p0ðV 0=V Þc ð5Þ

where c is the ratio of the specific heat capacity of the gas at
constant pressure, to its value at constant volume. The ef-
fects of surface tension and vapour pressure are neglected.
This expansion generated the following expression
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where Ve(t) is the perturbation in bubble volume, and
where
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is the Minnaert frequency of the bubble and the parameters
aZS and bZS represent the following groupings
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The term FZS was introduced in an ad hoc fashion to
include dissipation. It was assumed to be frequency
dependent.

The achievement of Zabolotskaya and Soluyan in gener-
ating this analysis should not be underestimated. Its timing
perceptively heralded and facilitated a wealth of investiga-
tions which employed their findings (ranging from biomed-
ical therapy to seabed exploration [4–9]), yet did so in a
way which provided equations that were appropriate not
only for the computing power of the day, but also over
the decades that followed. Furthermore, this analysis pro-
vided a framework in which the physical influences of the
various terms are transparent.

Over the thirty years and more since Eq. (6) was pub-
lished by Zabolotskaya and Soluyan, its popularity has
increased. It is now important to revisit the assumptions
inherent in the formulation, and ask whether the assump-
tions required for its derivation in 1973 are still necessary,
given increased computing power, and to highlight the
implications of the continued use of those assumptions.
This is particularly so in light of two issues, both of which
relate to the impression which can be given that Eq. (6) is
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