ARTICLE IN PRESS

Ultrasound in Med. & Biol., Vol. ■, No. ■, pp. 1–5, 2016 Copyright © 2016 World Federation for Ultrasound in Medicine & Biology

Printed in the USA. All rights reserved 0301-5629/\$ - see front matter

http://dx.doi.org/10.1016/j.ultrasmedbio.2015.12.016

Technical Note

A BROADBAND POLYVINYLIDENE DIFLUORIDE-BASED HYDROPHONE WITH INTEGRATED READOUT CIRCUIT FOR INTRAVASCULAR PHOTOACOUSTIC IMAGING

VERYA DAEICHIN,* CHAO CHEN,[†] QING DING,[†] MIN WU,* ROBERT BEURSKENS,* GEERT SPRINGELING,*
EMILE NOOTHOUT,[‡] MARTIN D. VERWEIJ,[‡] KOEN W. A. VAN DONGEN,[‡] JOHAN G. BOSCH,*
ANTONIUS F. W. VAN DER STEEN,*[‡] NICO DE JONG,*[‡] MICHIEL PERTIJS,[†] and GIJS VAN SOEST*
*Biomedical Engineering, Thorax Center, Erasmus MC, Rotterdam, The Netherlands; [†]Electronic Instrumentation Lab, Delft University of Technology, Delft, The Netherlands; and [‡]Lab of Acoustical Wavefield Imaging, Delft University of Technology, Delft, The Netherlands

(Received 16 July 2015; revised 21 October 2015; in final form 16 December 2015)

Abstract—Intravascular photoacoustic (IVPA) imaging can visualize the coronary atherosclerotic plaque composition on the basis of the optical absorption contrast. Most of the photoacoustic (PA) energy of human coronary plaque lipids was found to lie in the frequency band between 2 and 15 MHz requiring a very broadband transducer, especially if a combination with intravascular ultrasound is desired. We have developed a broadband polyvinylidene difluoride (PVDF) transducer $(0.6 \times 0.6 \text{ mm}, 52 \,\mu\text{m})$ thick) with integrated electronics to match the low capacitance of such a small polyvinylidene difluoride element ($<5 \text{ pF/mm}^2$) with the high capacitive load of the long cable (\sim 100 pF/m). The new readout circuit provides an output voltage with a sensitivity of about 3.8 μ V/Pa at 2.25 MHz. Its response is flat within 10 dB in the range 2 to 15 MHz. The root mean square (rms) output noise level is 259 μ V over the entire bandwidth (1–20 MHz), resulting in a minimum detectable pressure of 30 Pa at 2.25 MHz. (E-mail: v.daeichin@erasmusmc.nl) © 2016 World Federation for Ultrasound in Medicine & Biology.

Key Words: Photoacoustic, Broadband receiver, Polyvinylidene difluoride transducer, Integrated circuit, Hydrophone, Atherosclerosis.

INTRODUCTION

Cardiovascular diseases are the number one cause of death worldwide, causing about one-third of the total mortality (World Health Organization 2015). Nearly half of these cardiac deaths are due to acute coronary syndromes. The majority of these fatal acute coronary syndromes are caused by rupture of vulnerable plaques and thrombosis (Buja and Willerson 1994; Libby 2002; Libby et al. 2010; Schaar et al. 2004). Among imaging modalities targeting vulnerable plaques, photoacoustic (PA) imaging (Beard 2011) has been found to be capable of detecting and locating lipid components in the vessel wall, a major risk factor for plaque rupture (Madder et al. 2013), with reasonably large imaging depth

(Jansen et al. 2011; 2014; Wang et al. 2011; 2012; 2013). This imaging technique, which applies pulsed light excitation, benefits from the optical absorption properties of tissue composition as contrast. Moreover, it has been established that the frequency range of the PA signal is inversely proportional to the dimensions of absorbing structures (Diebold 2009; Khan and Diebold 1995; Xu et al. 2015). As PA signals can be weak, it is important to match the transducer sensitivity to the frequency band providing the highest signal strength for in vivo imaging. In an ex vivo setup, we have observed that more than 80% of the emitted PA energy of human coronary plaque lipids lies in the frequency range 2 to 15 MHz with pressures typically on the order of 50 to 200 Pa (Daeichin et al. 2015). These results are in an agreement with the size of intra-plaque lipid structures observed in histologic slices (structures on the order of 100 μm). Multimodal imaging with intravascular photoacoustic imaging (IVPA) and intravascular ultrasound (IVUS) (Mintz et al. 2001) makes it possible to locate

Address correspondence to: Verya Daeichin, Thoraxcenter Biomedical Engineering, Room Ee23.02, Erasmus MC, PO Box 2040, 3000 CA, Rotterdam, The Netherlands. E-mail: v.daeichin@erasmusmc.nl

the chemical information provided by IVPA in the arterial structure imaged by IVUS. The frequency band of conventional IVUS transducers used in PA imaging systems is >20 MHz. Therefore, there is an urgent need in the field of intravascular PA imaging for a broadband and sensitive receiver that captures PA signals in the fre-

quency range around 5 MHz.

2

Although the lead zirconate titanate (PZT) ceramics used in conventional IVUS transducers have been found to have good sensitivity, they have insufficient bandwidth to also cover the IVPA application discussed here. On the other hand, piezoelectric polymers, such as polyvinylidene difluoride (PVDF), have low acoustical impedance that is better matched to tissue and have outstanding broadband receiving performance, even with a small sensing area. However, because of the very low electrical capacitance of small PVDF elements (<5 pF/mm²) compared with the much higher capacitance of the connecting coaxial cable (~100 pF/m), a buffer amplifier is required.

To solve this problem, particularly for intravascular imaging applications, we have designed and fabricated a readout integrated circuit (IC) that is connected directly behind the PVDF element inside the catheter tip. The sensitivity and receive transfer function of a prototype PVDF element integrated with the proposed IC have been evaluated and compared with those of a commercially available needle hydrophone (SN1875, Precision Acoustics, Dorset, UK). We refer to our probe as a PVDF element with integrated circuit (PIC), and the commercial hydrophone, as CH throughout the article.

METHODS

A 52- μ m-thick PVDF film (Measurement Specialties, Hampton, VA, USA) was cut in a square shape (0.6 \times 0.6 mm) using a laser micromachining

workstation (FemtoLAB, Workshop of Photonics, Vilnius, Lithuania). This PVDF element was then directly mounted on top of a custom-designed readout IC to construct the PIC. This IC was designed using a Butterworth-Van Dyke model for electrical simulation, the parameters of which were derived from a KLM model of the PVDF element. The readout IC, fabricated in a standard 0.18-µm CMOS (complementary metal oxide semiconductor) process, consists of a trans-impedance amplifier (TIA) and a source follower (SF), as illustrated in Figure 1. The TIA converts the current generated by the PVDF element to voltage with a trans-impedance gain determined by the feedback network, R_f and C_f. When referred to the input of the readout IC, the noise contributions from succeeding circuits and the cable can be reduced by increasing the trans-impedance gain. As such, the TIA also performs as a low-noise amplifier (LNA). The SF provides a low output impedance to match the 50- Ω characteristic impedance of the cable. Both circuit blocks are powered by an external bias current source via a single micro-coaxial cable, which also carries the signal current drawn by the SF. The bias current is divided between the TIA and the SF by means of an on-chip current mirror (M_2 and M_4) with a low-pass filter (R_p and C_p) that prevents the output signal from feeding back into the TIA. Thus, the output impedance of the readout IC can be approximated as

$$Z_0 \approx \frac{1}{g_{m3}} + \frac{1}{g_{m4}}$$
 (1)

where $g_{\rm m3}$ and $g_{\rm m4}$ are the trans-conductances of M_3 and M_4 , respectively. As $g_{\rm m3}$ and $g_{\rm m4}$ are both functions of the bias current (Allen and Holberg 2002), the output impedance of the readout IC can be adjusted by tuning the external current source, $I_{\rm bias}$. At the system side, the output signal can be distinguished as a voltage $V_{\rm OUT}$ with a high-pass filter ($R_{\rm load}$ and $C_{\rm ac}$).

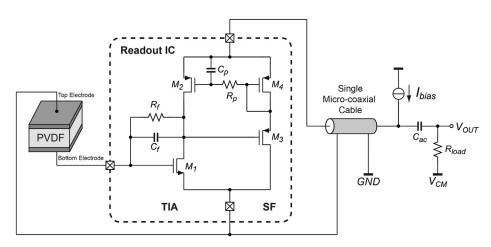


Fig. 1. Schematic of the proposed single-cable readout integrated circuit (IC).

Download English Version:

https://daneshyari.com/en/article/1760222

Download Persian Version:

https://daneshyari.com/article/1760222

<u>Daneshyari.com</u>