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Abstract—A novel fully automated algorithm is introduced for 3-D cross-modality image segmentation of the pros-
tate, based on the simultaneous use of co-registered computed tomography (CT) and 3-D ultrasound (US) images.
By use of a Gabor feature detector, the algorithm can outline in three dimensions and in cross-modality the
prostate, and it can be trained and optimized on specific patient populations. We applied it to 16 prostate cancer
patients and evaluated the conformity between the automatically segmented prostate contours and the contours
manually outlined by an experienced physician, on the CT-US fusion, using the mean distance to conformity
(MDC) index. When only the CT scans were used, the average MDC value was 4.5 + 1.7 mm (maximum
value = 9.0 mm). When the US scans also were considered, the mean + standard deviation was reduced to
3.9 + 0.7 mm (maximum value = 5.5 mm). The cross-modality approach acted on all the largest distance values,
reducing them to acceptable discrepancies. (E-mail: davide.fontanarosa@maastro.nl)  © 2015 World Federation
for Ultrasound in Medicine & Biology.
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INTRODUCTION evaluation, based on comparisons between target
contours before and after the treatment.

Segmentation can be very time demanding. In
particular, for prostate, manual segmentation is a tedious
task. Computed tomography (CT) is the most widely used
imaging modality for segmentation in RT because it is
required for dose calculation and, therefore, is always
available prior to treatment planning. But integration of
imaging information from different modalities may help
improve segmentation of structures. This is why fused
multimodality data sets are frequently used for contour-
ing. Several imaging methods can be used in combination
with CT for better localization and definition of the pros-
tate: the most common are cone-beam computed tomog-
raphy (Oldham et al. 2005; Zeng et al. 2008), magnetic
resonance imaging (MRI) (Raaymakers et al. 2009) and
ultrasound (US) imaging (Fraser et al. 2010; Fung et al.

Cancer Research UK (http://www.cancerresearchuk.org)
estimated that about 900,000 men worldwide were diag-
nosed with prostate cancer in 2008, accounting for almost
one in seven (14%) cancers diagnosed in men. Radio-
therapy (RT) is one of the primary treatment modalities
for prostate cancer patients. The definition of the regions
to be treated (regions of interest) and of the organs at risk
to be spared is increasingly becoming a crucial step of the
RT workflow. Segmentation (or contouring) is involved
not only at the planning stage, at which reliable contours
can make the difference between positive and negative
treatment outcomes, but also during treatment, for
example, for image guided radiation therapy (IGRT)
(Davis et al. 2005; Xing et al. 2006) or for outcome

Address correspondence to: Davide Fontanarosa, Department of 2006; Lattanzi et al.1999; Mayyas et al. 2013; Morr
Radiation Oncology (MAASTRO), GROW—School for Oncology et al. 2002; Robinson et al. 2012; Wein et al. 2007).
and Developmental Biology, Maastricht University Medical Center, Us i 1 1 d f . d IGRT
Maastricht 6201 BN, The Netherlands. E-mail: davide.fontanarosa@ 1s currently mostly used for segmentation an

maastro.nl (Molloy et al. 2004; Smith et al. 2007) because it


Delta:1_given name
Delta:1_surname
Delta:1_given name
Delta:1_surname
Delta:1_given name
Delta:1_surname
Delta:1_given name
Delta:1_surname
mailto:davide.fontanarosa@maastro.nl
http://www.cancerresearchuk.org
http://dx.doi.org/10.1016/j.ultrasmedbio.2015.05.025
http://dx.doi.org/10.1016/j.ultrasmedbio.2015.05.025
mailto:davide.fontanarosa@maastro.nl
mailto:davide.fontanarosa@maastro.nl

2 Ultrasound in Medicine and Biology

provides a quantitative and cost-effective imaging tech-
nique that avoids unwanted radiation dose to the patient.

To combine the required accuracy with an efficient
workflow, semi-automated and automated segmentation
strategies were introduced (e.g., Pekar et al. 2004).
Recently, 2-D and 3-D state-of-the-art-prostate automatic
segmentation methodologies have been reviewed (Ghose
etal. 2012). In this work, the most common methods were
classified into the following categories: contour- and
shape-based methods; region-based methods; supervised
and unsupervised classification methods; and hybrid
methods. For CT images, several automatic segmentation
algorithms have been proposed (Costa et al. 2007; Davis
et al. 2005; Lu et al. 2011; Tang et al. 2004; Siqi and
Radke 2009), but this imaging modality typically
exhibits poor soft tissue contrast, which leads in most
cases to an intrinsic limitation of the features that
can be used for a correct automated segmentation
procedure. For the pelvic area, for example, the key
features are the boundaries between bladder, prostate
and seminal vesicles, which are often very difficult to
identify.

For prostate segmentation based on US scans,
most of the algorithms previously developed segment
structures only in two dimensions (Betrouni et al. 2005;
Jendoubi et al. 2004; Shen et al. 2003). For 3-D image
data sets, contours are created on each slice separately.
This leads to a partial use of the information provided
by the whole volume and is likely to produce errors. In
fact, even when the boundary curve obtained as the result
of a single-slice 2-D segmentation is used as the starting
configuration to propagate and adapt to nearby slices
(e.g., Ding et al. 2007), the error introduced at each step
could propagate to the following steps and compromise
the entire result. Three-dimensional prostate segmenta-
tion methodologies based on active shape and appearance
models were introduced by Cootes et al. (1994). Ghose
et al. (2013) merged this basic shape-driven process
with feature learning support. This approach adapts
well to the characteristics of different types of imaging
modalities, but it was limited to a single modality (US).

To our knowledge, no automated cross-modality
segmentation algorithm is available for CT-US com-
bined data sets. Chowdhury et al. (2012) proposed a
framework to build a statistical shape model for a
structure of interest using multiple imaging modalities.
Contextually, they derived an algorithm for prostate seg-
mentation based on magnetic resonance (MR)-CT im-
ages. Although, in principle, this general approach for
the definition of the shape model could also be applied
to US images (instead of MR images), its application is
less effective for imaging modalities such as US, in which
the signal derives mainly from the region boundaries
and it has differential sensitivity to different boundaries
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(e.g., parallel or perpendicular to the US beam propaga-
tion direction).

A common basis of many techniques in medical
image segmentation is the active contour model frame-
work (Kass et al. 1988). In this work, an initial contour
(snake or 2-D spline) is positioned inside the image;
then an energy function is defined in terms of internal
components (i.e., contour shape, continuity, smooth-
ness) and external components (i.e., image features
such as the intensity or the gradient of the intensity);
finally, the contour is iteratively deformed to the desired
shape and position by minimizing the energy function. A
well-known problem associated with this approach is
that the information provided locally by low-quality im-
ages may not be sufficient to characterize the border in
every control point of the contour spline. Then most of
the state-of-the-art segmentation methods tried to
enforce the internal energy evaluating the target shape
as a whole (level sets) (Osher and Sethian 1988; Tsai
et al. 2003) or to enforce the constraints on the target
shape (active shapes) (Cootes et al. 1995); in both cases,
the possibility of locally characterizing the border of the
target is lost.

In our work we propose a new representation of the
target region shape that preserves the local description, as
in the original active contour model, but can also effi-
ciently take into account all the additional information
present in advanced multimodality imaging (and exploits
the improved computational capabilities available today):
the polar defined convex volume (PDCV). The PDCV is a
meshlike data structure defined in a polar coordinate sys-
tem, with its origin representing the floating center of
mass of the region. Its intrinsically 3-D definition allows
analysis of the features extracted from image data directly
in 3-D space. Moreover, we introduce surface classes,
which are a partition of the target border allowing the
use of different trained feature models on different sur-
face areas independently. We also introduce the concept
of topologic multiplicity, which allows for a more accu-
rate representation of such surface areas, retrieving infor-
mation not only from structures found on the border, but
also in its neighborhood.

The prostate segmentation process consists of
approximating an initial position for the PDCYV, then
iteratively extracting features along the local normal
directions to the PDCV surface. This procedure simulta-
neously takes into account the information from all the
modalities (multimodality approach) and also in the
neighboring locations along the normal directions to the
contour (topologic multiplicity). These feature vectors
are evaluated with respect to a model previously trained
for the specific local surface region (class); on the basis
of this evaluation, the best new candidate position for
the surface points is chosen and the PDCV is updated
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