Dyes and Pigments 109 (2014) 90-95

Contents lists available at ScienceDirect

Dyes and Pigments

journal homepage: www.elsevier.com/locate/dyepig

Solar spectral optical properties of rutile TiO₂ coated mica-titania pigments

^a School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641, People's Republic of China ^b Key Laboratory of Specially Functional Materials of the Ministry of Education, South China University of Technology, Guangzhou 510641, People's Republic of China

ARTICLE INFO

Article history: Received 2 January 2014 Received in revised form 16 April 2014 Accepted 17 April 2014 Available online 1 May 2014

Keywords: Rutile Nanoflower Nononeedle UV shielding NIR reflectance TiO₂

ABSTRACT

Different shaped rutile TiO₂ coated mica—titania pigments were prepared by hydrolysis of TiCl₄ ethanolic solution at 70 °C. SnO₂ as a rutile promoting additive was deposited onto mica prior to TiO₂. The use of TiCl₄ played a crucial role in controlling the morphology of rutile TiO₂ coatings. Monodisperse nano-needles were assembled into nanoflowers with an increasing particle size as the TiO₂ loading increased. A possible crystal growth mechanism of rutile TiO₂ with rich nanostructures was proposed. The obtained rutile samples showed stronger ultraviolet shielding ability and higher near-infrared reflectance property than that of anatase sample. What's more, the rutile TiO₂ coating with smaller particle size possessed higher reflectance in the region of 1300–2500 nm in accordance with the Kubelka–Munk theory. The near-infrared solar reflectance of the rutile TiO₂ coated mica—titania pigment was as high as 97%, making them good candidates for solar reflective pigments.

© 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Utilization of solar reflective coatings has shown great potential to reduce solar heat gain and cooling loads of urban buildings while improving indoor thermal conditions [1]. Solar reflective coatings are characterized by high solar reflectance and infrared emittance values [2]. This technique is low cost, energy efficient and may be widely applied to roofs, walls and pavements.

It is well-known that visible light (Vis, 400–700 nm) accounts for only 43% of the energy in the air-mass1.5 global solar irradiance spectrum (300–2500 nm) typical of North-American insolation; the remainder arrives as near-infrared radiation (NIR, 700– 2500 nm, 52%) or ultraviolet radiation (UV, 300–400 nm, 5%) [3]. Therefore, a solar reflective coating should be highly reflective in the visible light and near-infrared parts of the electromagnetic spectrum in order to maintain a high solar reflectance. The optical properties of the coatings are primary influenced by pigments [2]. Thus there is a strong incentive to develop novel solar reflecting inorganic pigment.

E-mail address: sunnyqiangscut@hotmail.com (X. Wu).

Mica—titania pigments are based on TiO₂ precipitated onto platelets of mica, exhibiting outstanding qualities of luster, brilliance and iridescent color effects [4,5]. These pigments are widely applied in optical filters, cosmetics, plastics, printed products, ceramic, industrial coatings, and car paints [6,7]. Several studies have reported the luster and color properties of mica—titania pigments [8,9]. To our knowledge, few researches have reported solar spectral optical properties of rutile TiO₂ coated mica—titania pigments, although these pigments may have high reflectance and photostability [10].

In this paper, we demonstrated a simple and facile solution process for depositing rutile TiO_2 onto mica substrates at 70 °C. The effect of phase composition, morphology and particle size on the solar spectral optical properties of mica-titania pigments was investigated.

2. Experimental

2.1. Materials

The mica used as the substrate in this study was synthetic mica. Analytical grade titanium tetrachloride (TiCl₄), tin tetrachloride (SnCl₄), absolute ethanol (C_2H_5OH), sodium hydroxide (NaOH), hydrochloric acid (HCl) and distilled water were used in the experiments.

PIGMENTS

^{*} Corresponding author. School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641, People's Republic of China. Tel./ fax: +86 020 87114243.

2.2. Preparation method

The synthesis of anatase TiO₂ coated mica-titania pigments was carried out in the following way [11]. Mica particles with a diameter of 10–100 um and a thickness of less than 1 um were used as raw materials and were dispersed in distilled water. The batch was then heated to 70 °C and the pH value was adjusted to 1.0 with dilute hydrochloric acid. Then TiCl₄ ethanolic solution (120 mL) was introduced into the agitated slurry within 4 h. The pH value of the slurry was kept constant by simultaneous addition of NaOH solution. After the addition was completed, the slurry was aged for 1 h and then allowed to settle and cool to room temperature. Finally, the particles were separated, washed with distilled water and dried at 70 °C for 24 h. This sample was labeled as mica-A-TiO₂.

To obtain the rutile phase of TiO₂ onto mica substrate, the introduction of SnO₂ was done using SnCl₄ solution. First, mica (10 g) was suspended in distilled water (1 L) and heated to 70 °C, and the pH value of the slurry was adjusted to 2.0 using HCl. Then, SnCl₄ aqueous solution (15 g/L, 11.1 mL) was added dropwise while the pH value was held constant by simultaneous addition of NaOH solution for 1 h. The weight ratio of SnO₂ to mica was 0.96%. Then, the pH value was adjusted to 1.0, and the TiO₂ coating was deposited on mica by addition of TiCl₄ ethanolic solution in the same way as described above. The amount of TiCl₄ ethanolic solution was 20 mL, 40 mL, 80 mL, and 120 mL, respectively and gave samples labeled as mica-R20-TiO₂, mica-R40-TiO₂, mica-R80-TiO₂, and mica-R120-TiO₂, respectively.

2.3. Characterization

Raman spectroscopy was done on a LabRAM Aramis (HORIBA Jobin Yvon) with spectral resolution of 1 cm^{-1} . The laser line of the exciting source was at 532 nm. Scanning electron microscopy (SEM) images were recorded on a Nova NanoSEM 430. The operation voltage was 10 kV. The weight ratio of TiO₂ in pigments was determined by X-ray fluorescence spectrometry using a model PANalytical Axios. UV-Vis-NIR diffuse reflectance spectra were collected using a UV-Vis near-infrared spectrometer (Lambda950, PerkinElmer, United States). Optical measurements were performed in the 200-2500 nm range. The solar reflectance in the wavelength range from λ_1 to λ_2 can be determined by applying the following formula:

$$R = \frac{\int_{\lambda_1}^{\lambda_2} r(\lambda) i(\lambda) d\lambda}{\int_{\lambda_1}^{\lambda_2} i(\lambda) d\lambda}$$
(1)

where $r(\lambda)$ is the spectral reflectance (W m⁻²) obtained from the experiment and $i(\lambda)$ is the solar spectral irradiance (W m⁻² nm⁻¹) obtained from ASTM standard G173.

To investigate the colorimetric values of the pigments, the pigment powders were pressed into a wafer with a diameter of 2.5 cm. Then, the CIE Lab of the pigment samples under 10° were measured by the X-Rite Inc model spectrophotometer (D65 illuminant).

To investigate the photostability of the pigments, rutile TiO₂ coated mica particles (mica-R80-TiO₂) or commercial rutile TiO₂ pigment were dispersed in an acrylic resin emulsion and then the coating was coated to calcium silicate board. The mass ratio of pigments to acrylic resin emulsion was 1:20. Finally, the coatings were dried at room temperature for 24 h. The films composed of mica-R80-TiO₂ or commercial rutile TiO₂ pigment were labeled as F1, F2, respectively. The paint films were weathered for 168 h using

$$\Delta E = \sqrt{\Delta L^2 + \Delta a^2 + \Delta b^2} \tag{2}$$

where ΔE is the color change, ΔL is the decline of *L* (lightness) after UV weathering, Δa is the decline of *a* (red-green index) after UV weathering, and Δb is the decline of b (yellow-blue index) after UV weathering.

3. Results and discussion

Intensity/a.u.

3.1. Synthesis of rutile TiO₂ coated mica-titania pigments

Raman spectra are effective to identify the phase structures, especially for distinguishing the anatase TiO₂ from rutile TiO₂. According to the group theory, rutile has four Raman active modes: $A_{1g} + B_{1g} + B_{2g} + E_g$. The allowed modes reported were at 143 cm⁻¹ (B_{1g}), 235 cm⁻¹ (two-photo scattering), 447 cm⁻¹ (E_g), 612 cm⁻¹ (A_{1g}) , and 826 cm⁻¹ (B_{2g}) [12,13]. As for anatase, only six bands were reported in the same wave number range corresponding to the six Raman active vibration modes: 144 cm^{-1} (E_g (1)), 197 cm⁻¹ (E_g (2)), 399 cm⁻¹ (B_{1g} (1)), 513 cm⁻¹ (A_{1g}), 519 cm⁻¹ (B_{1g} (2)) and 639 cm^{-1} (Eg (3)) [14]. Fig. 1 shows the Raman spectra of the TiO₂ samples. As we can see from Fig. 1(b), the peaks appearing at 150, 512, 632 cm⁻¹ are typical anatase bands. The TiO₂ sample (mica-R120-TiO₂) with a prior deposition of SnO₂ as a seed layer reveals spectral features basically corresponding to the rutile phase (234, 443, 612 cm^{-1}). Other weak peaks appearing at 102, 325 and 682 cm^{-1} can be ascribed to B_g and A_g modes of mica. So the Raman spectra confirm that the prior deposition of SnO₂ leads to the formation of pure rutile TiO₂ coating. The rutile promoting effects of SnO₂ could be ascribed to the structural similarity of rutile and cassiterite [15].

Fig. 2 shows the Raman spectra of TiO₂ thin layers deposited on mica with different TiO_2 loadings. The peaks appearing at 325, 443, 612 cm^{-1} are typical rutile bands, and the other peaks could be ascribed to mica. So the Raman spectra confirm that TiO₂ loadings have little influence on the phase composition of the TiO₂ coatings. With the increase of TiO₂ loading, the intensity of these rutile peaks

102 234 325 682 150 (a) 632 512 (b) 200 400 600 800 1000 Raman shift/cm⁻¹

Fig. 1. Raman spectra of (a) mica-R120-TiO₂ and (b) mica-A-TiO₂.

Download English Version:

https://daneshyari.com/en/article/176049

Download Persian Version:

https://daneshyari.com/article/176049

Daneshyari.com