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Abstract

The thermal subsystem of spacecrafts and payloads is always designed with the help of Thermal Mathematical Models. In the case of
the Thermal Lumped Parameter (TLP) method, the non-linear system of equations that is created is solved to calculate the temperature
distribution and the heat power that goes between nodes. The accuracy of the results depends largely on the appropriate calculation of
the conductive and radiative conductances.

Several established methods for the determination of conductive conductances exist but they present some limitations for complex
geometries. Two new methods are proposed in this paper to calculate accurately these conductive conductances: The Extended Far Field
method and the Mid-Section method. Both are based on a finite element calculation but while the Extended Far Field method uses the
calculation of node mean temperatures, the Mid-Section method is based on assuming specific temperature values. They are compared
with traditionally used methods showing the advantages of these two new methods.
� 2015 COSPAR. Published by Elsevier Ltd. All rights reserved.
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1. Introduction

The thermal subsystem of a spacecraft is an important
component of the design process of a space mission. Ther-
mal environment in space is extremely harsh and a very
careful design of the thermal subsystem is essential to com-
plete successfully any kind of space mission. Many deci-
sions that are made about the physical design of the
spacecraft or the thermal subsystem are based on computa-
tional models that simulate the real thermal behaviour of
the spacecraft once in space.

These computational models (usually called TMM,
Thermal Mathematical Model) take into account the differ-
ent components of the thermal subsystem that are present
in the spacecraft or payload, as heaters, heat pipes, radia-
tors, MLI (Multi Layer Insulation), etc. The TMM takes
also into account the parts of the spacecraft that act as heat
conductors: metallic walls, frames, components. Usually,
heat is produced in some specific points of the spacecrafts,
such as motors, scientific experiments, electronic boards,. . .
and needs to be conducted towards the radiator, where is
radiated to deep space.

For the computational thermal study of a mission, the
spacecraft is divided into nodes, which are assumed to be
each one isothermal. Heat is transferred among nodes at
different temperatures through conduction, convection
and radiation. Convection is only present if the spacecraft
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has a pressurized volume, usually for manned expeditions,
as the International Space Station and others. Heat trans-
ferred through conduction follows inside the spacecraft
what are known as heat paths. To model adequately
through the TMM these conductive paths it is necessary
to calculate the conductive conductances (GLs) between
the nodes. Heat is also conducted through radiation
between the nodes, and the calculation of the radiative con-
ductances (GRs) is also needed. This approach for the ther-
mal subsystem computational study is known as the
Thermal Lumped Parameter method (TLP) and has a long
and successful history in the space industry. It is in itself an
approximate method by the assumptions that have already
been mentioned (i.e.: isothermal nodes) and also because of
the discretization needed to solve the heat transfer differen-
tial equation.

The TLP method is described in detail elsewhere
(Gilmore, 2002; Karam, 1998; Redor, 1995). The set of N
non-linear algebraic transient equations that are obtained
and that have to be solved is expressed by Eq. (1).

Xn

j¼1

GLði; jÞðT i � T jÞ þ
Xn

j¼1

GRði; jÞðT 4
i � T 4

j Þ

þMiCi
dT i

dt
¼ Qi ð1Þ

The term where GL appears is related to the conduction
heat transfer between node i and the rest of the nodes of
the model. The GR term describes the heat interchanged
by radiation, while theMiCi term accounts for the tempera-
ture time change of the i node. Finally,Qi represents the heat
that comes directly from external sources (sun, albedo, infra-
red,. . .) and the heat that it is directly produced in the i node
itself. After solving the set of N non-linear algebraic equa-
tions, the temperature in each node will be known and also
their evolution with time, if the case is a transient one.

From this outlook of the heat equations, it is clear that
an accurate calculation of the conductive conductances
(GLs), the radiative conductances (GRs) and the thermal
inertias (MCs) is of outmost importance to obtain precise
temperature values for the nodes.

Apart from the Reduced Conductive Network Method
(Soriano, 2010), which is a second order method, mathe-
matically consistent with the thermal analysis of the com-
mercial code THERMICA, several established methods
have traditionally been used to calculate the GL values.
Between them, it is worth to mention the simple hand cal-
culations (Gilmore, 2002), finite element based calculations
(Jacques, 2009), the Far Field method (Appel et al., 2004;
Kirtley et al., 2005; Strutt et al., 2014) or the auxiliary node
method (Gilmore, 2002). However, all the traditionally
used methods present some limitations, especially to handle
complex geometries. The objective of the present paper is
to revise these known methods and to present two new
methods that can deal adequately with the GL calculations,
especially when considering not elemental geometries.

2. Established methods for conductive conductances

calculation

2.1. Hand calculations

When the concept of conductive conductance is to be
defined, it is very usual to start with a simplified expression
of the Fourier law for one dimensional heat transfer, Eq. (2).

q ¼ k � A dT
dx

� k � A � DT
Dx

ð2Þ

where q is the rate of heat transferred due to conduction
(W), k is the thermal conductivity of the material (W/m�
C), A is the cross sectional area normal to the heat flow
(m2) and DT the temperature increment (�C) in the space
length Dx (m).

Then, the conductive conductance is calculated by
Eq. (3).

GL ¼ k
A
Dx

! q ¼ GL � DT ð3Þ

As an example, in Fig. 1, a rectangular geometry, with
an area A as a cross section, is divided into seven equal
nodes. The centre of each node is signalled with a cross.
The GL corresponding to two nodes is calculated between
the centres of these nodes with Eq. (3).

Nomenclature

A auxiliary node
EFF Extended Far Field
FEM Finite Element Method
FF Far Field
MLI Multi Layer Insulation
TLP Thermal Lumped Parameter
TMM Thermal Mathematical Model
A cross-sectional area
GL conductive conductance
GR radiative conductance
L length

MC thermal inertia
N an integer number
Q heat load
T temperature
a, b, w real numbers
i, j, kt, n integer numbers
k thermal conductivity
q heat flux
t time
x length
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