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Abstract

It is shown that measured power spectral densities (spectra) that closely resemble power-law spectra may, in fact, have mathematical
forms that are not power laws in the mathematical sense. If power spectral estimates show a good fit to a straight line on a log–log plot over
a finite frequency range, that is not sufficient evidence to conclude that the mathematical form of the spectrum is, in fact, a power-law over
that range. It is also pointed out that to accurately fit a power-law function to experimental data using linear least squares techniques in
log–log space, as is often done in practice, it is essential that the data is uniformly distributed along the abscissa in log-space (in the stochastic
sense) or, otherwise, the data must be linearly interpolated onto a uniform grid to ensure that the data employed in the fitting procedure is
equally weighted along the abscissa. These two important points are not widely appreciated by researchers in the field and the pitfalls
associated with commonly used fitting techniques are often overlooked in the analysis of solar wind data.
� 2015 COSPAR. Published by Elsevier Ltd. All rights reserved.
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1. Introduction

A significant advance in solar wind science is the recent
discovery that the power spectral density (the spectrum) of
the total energy of MHD scale fluctuations in the ‘‘inertial
range” has a spectral index near 3/2, on average (Podesta,
2013a,b, and references therein). This is a consequence of
the fact that the spectrum of magnetic field fluctuations is
usually steeper than the spectrum of plasma velocity fluctu-
ations, indicating an excess of magnetic energy over kinetic
energy scale by scale—one of the characteristic features of
MHD turbulence (Chen et al., 2013). The spectral index of
the trace spectrum of the magnetic field is near 5/3, on
average. The spectrum of the total energy is the sum of
the trace spectra of the magnetic field fluctuations and
the plasma velocity fluctuations, both expressed in the
same physical units, and the value 3/2 observed in the solar
wind is consistent with that observed in simulations of

homogeneous incompressible MHD turbulence (Boldyrev
et al., Nov. 2011). In the solar wind, these spectra behave
like power laws over more than two or three decades in fre-
quency and/or wavenumber. Similar power-law spectra are
observed in different branches of science.

Estimates of power spectral densities obtained from
experimental data often behave like power-laws over finite
frequency ranges. But this does not necessarily imply or
demonstrate that a spectrum is, in fact, a power-law spec-
trum over the indicated frequency range, that is, a spec-
trum of the form SðxÞ ¼ A=xa, where A and a are
positive constants. For example, a spectrum of the form
SðxÞ ¼ x�a logðxÞ resembles a power-law spectrum on a
log–log plot and may easily be mistaken for a power law
spectrum by a scientist analyzing experimental data, even
though it is not a pure power-law spectrum in the mathe-
matical sense. Similarly, a gradual curvature of the spec-
trum can often go unnoticed, even by experienced
researchers. Therefore, it is important to keep in mind that
what ‘‘looks like” or ‘‘behaves like” a power-law spectrum
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on a log–log plot, may not be a true power-law spectrum in
the mathematical sense of the term. The first goal of this
study is to demonstrate this important point.

The second goal is to demonstrate why it is necessary to
use uniformly distributed abscissa when estimating the
power law exponent of a function y ¼ f ðxÞ from a plot of
logðxÞ versus logðyÞ using linear least squares techniques,
a technique commonly used in space physics and other
fields.

2. Asymptotic behavior of spectra

The rate of growth of the function logðxÞ as x ! 1 is
less than the rate of growth of the function x� for any
� > 0. Consequently, the following three functions are, in
order of increasing growth,

1; logðxÞ; x�; � > 0: ð1Þ
With the substitution x ¼ logðtÞ, it follows that for any
constant b > 0, the rate of growth of the function
log½logðxÞ� is less than the rate of growth of the function

½logðxÞ�b which is, in turn, less than the rate of growth of
the function x� for any � > 0. Therefore, for any positive
constant a > 0, the following four functions are listed in
order of increasing growth:

x�a; x�a log½logðxÞ�; x�a½logðxÞ�b; x��a; ð2Þ
and this ordering holds for any � > 0. This shows that
given two decreasing power-law functions with arbitrarily
close power law indices a and a� �, there exist functions

with rates of growth greater than x�a and less than x�ða��Þ

that do not behave asymptotically like a power law.
From a practical point of view, the functional depen-

dence of functions like those just discussed are often indis-
tinguishable from power laws if the numerical values of the
function are given on a finite interval but the mathematical
definition or analytical expression are not given or not
known. For example, consider the functions

y1ðxÞ ¼ 200x�3=2 and

y2ðxÞ ¼ 100x�5=3 logð1þ xÞ; ð3Þ
where x > 0. These two functions are almost indistinguish-
able to the eye when viewed on a log–log plot over a range

spanning three decades, 10 < x < 104, as shown in the left-
hand plot in Fig. 1. This is remarkable considering that one
function has a power-law index of 3/2 while the other has a
leading coefficient with a power-law index of 5/3. These
two functions differ by roughly 10% over the entire fre-
quency range, as shown in the right-hand plot in Fig. 1.

If one performs a linear least squares fit to the data in
this particular frequency interval using 150 points that
are equally spaced along the abscissa logðxÞ, as described
in greater detail in Section 4, one finds that the fit to the
function y1ðxÞ has a spectral index a ¼ 1:50 whereas the
fit to the function y2ðxÞ has a spectral index a ¼ 1:48. It
would be incorrect to conclude from this fitting procedure

that the data for y2 comes from a power-law spectrum with
a power-law index of approximately a ¼ 1:48, although it
certainly does behave that way over this particular fre-
quency interval. The frequency spectrum y2ðxÞ is not a
power-law spectrum.

3. Power spectral densities in nature

Power-law spectra are believed to describe a wide range
of naturally occurring phenomena, although the applicable
frequencies are usually limited to a finite range. Conse-
quently, power-law spectra frequently arise in physical
models of natural phenomena. The Ornstein–Uhlenbeck
process that models the velocity of particles undergoing
Brownian motion in Einstein’s theory has an autocovari-
ance function

CðsÞ ¼ r2e�ks; s > 0; ð4Þ
where r and k are positive constants and Cð�sÞ ¼ CðsÞ.
The power spectral density, the Fourier transform of
CðsÞ, is

SðxÞ ¼ r2 2k

x2 þ k2
: ð5Þ

This spectrum has an asymptotic spectral index a ¼ 2.
Mathematically, any non-negative real valued function

SðxÞ with the properties Sð�xÞ ¼ SðxÞ and
R1
�1 SðxÞ

dx < 1 is the spectrum of a stationary stochastic process
(Davenport and Root, 1958, page 106) and, therefore, the
unusual kinds of asymptotic behavior studied in the last
section are physically realizable. Nevertheless, the extent
to which they represent physical processes in nature is
not widely known. Examples of such spectra are easily con-
structed, as will now be shown.

Consider the autocovariance function

CðsÞ ¼ r2 e�ks � ðksÞE1ðksÞ
� �

; s > 0; ð6Þ
which is defined for negative s by Cð�sÞ ¼ CðsÞ. Here,
k > 0 and

E1ðxÞ ¼
Z 1

x

e�t

t
dt; x > 0; ð7Þ

is the exponential integral (Abramowitz and Stegun, 1972,
Chapter 5). The corresponding spectrum is the Fourier
transform of CðsÞ given by

SðxÞ ¼ kr2

x2
log 1þ x2

k2

� �
: ð8Þ

As x ! 1, the spectrum (8) behaves like logðxÞ=x2, which
is not a power-law. However, on a log–log plot SðxÞ looks
like a power-law spectrum because the factor logðxÞ
changes much more slowly than the factor x�2 (see Fig. 2).

A natural generalization of the spectrum (8) is

SðxÞ ¼ r2

k
k2

x2

� �m
log 1þ x2

k2

� �m� �
; ð9Þ
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