
Analytical solutions to optimal underactuated spacecraft
formation reconfiguration

Xu Huang ⇑, Ye Yan, Yang Zhou

College of Aerospace Science and Engineering, National University of Defense Technology, Changsha 410073, China

Received 9 April 2015; received in revised form 17 July 2015; accepted 1 September 2015
Available online 7 September 2015

Abstract

Underactuated systems can generally be defined as systems with fewer number of control inputs than that of the degrees of freedom to
be controlled. In this paper, analytical solutions to optimal underactuated spacecraft formation reconfiguration without either the radial
or the in-track control are derived. By using a linear dynamical model of underactuated spacecraft formation in circular orbits, control-
lability analysis is conducted for either underactuated case. Indirect optimization methods based on the minimum principle are then
introduced to generate analytical solutions to optimal open-loop underactuated reconfiguration problems. Both fixed and free final con-
ditions constraints are considered for either underactuated case and comparisons between these two final conditions indicate that the
optimal control strategies with free final conditions require less control efforts than those with the fixed ones. Meanwhile, closed-loop
adaptive sliding mode controllers for both underactuated cases are designed to guarantee optimal trajectory tracking in the presence
of unmatched external perturbations, linearization errors, and system uncertainties. The adaptation laws are designed via a
Lyapunov-based method to ensure the overall stability of the closed-loop system. The explicit expressions of the terminal convergent
regions of each system states have also been obtained. Numerical simulations demonstrate the validity and feasibility of the proposed
open-loop and closed-loop control schemes for optimal underactuated spacecraft formation reconfiguration in circular orbits.
� 2015 COSPAR. Published by Elsevier Ltd. All rights reserved.
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1. Introduction

Spacecraft formation flying (SFF) that consists of a
cluster of spacecraft has been identified as a key enabling
technology for future space missions due to the advantages
over a traditional monolithic spacecraft such as decreased
cost and risk, enhanced reliability and survivability
(Huang et al., 2014a). It also offers increased flexibility as
a result of the capability of formation reconfiguration that
the spacecraft reposition themselves with respect to each

other to adapt to different space missions (Sabol et al.,
2001). As a major issue in SFF technology, optimal space-
craft formation reconfiguration has received wide research
interests. Vaddi et al. (2005) designed optimal formation
establishment and reconfiguration methods using impulsive
control. Optimal strategies for linearized balanced-energy
formation flying maneuvers using continuous thrusts have
been proposed by Rahmani et al. (2006) via an indirect
optimization method. Lee and Park (2011) derived approx-
imate analytical solutions to optimal reconfiguration prob-
lems in linearized perturbed orbits via the indirect method,
too.

Trajectory optimization methods are usually grouped
into two categories, namely, indirect and direct methods
(Conway, 2012). In indirect methods, the necessary
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optimality conditions derived from the minimum principle
are solved to generate exact solutions to the trajectory
optimization problems, which are thus inadequate for com-
plex problems that are hard to derive analytical solutions.
For complex nonlinear trajectory optimization problems,
the direct methods are more generally used, which
transcribe the optimal control problem into a nonlinear
programming (NLP) and solve the resulting NLP by
numerical methods. Several direct methods have been used
to solve optimal formation reconfiguration problems. Wu
et al. (2009, 2011) investigated nonlinear optimization
problems of formation reconfiguration by Legendre pseu-
dospectral method that belongs to direct methods.
Huntington and Rao (2008) addressed the problem of
how to reconfigure a tetrahedral formation in a
fuel-optimal way using the Gauss pseudospectral method.
Similar direct methods have also been utilized to achieve
optimal reconfiguration propelled by the geomagnetic
Lorentz forces or the inter-spacecraft Coulomb forces
(Huang et al., 2014a, 2015a; Inampudi and Schaub, 2012).

In most of the previous works that handled the optimal
reconfiguration problems propelled by continuous thrusts,
the dynamical system of SFF is assumed to be fully actu-
ated that the number of the degrees of freedom (DOFs)
of the system is equal to the number of the dimension of
independent control inputs. In other words, an indepen-
dent thruster exists in each of the radial, in-track, or nor-
mal direction. However, when a certain thruster breaks
down, the dynamical system of SFF would turn into an
underactuated one. Generally, underactuated systems refer
to the systems in which the dimension of the configuration
space exceeds that of the control input space, that is, the
number of the control inputs is less than the DOFs to be
controlled (Xin and Liu, 2014). Obviously, the previous
fully-actuated SFF control schemes could not accommo-
date the underactuated cases and it may lead to the mission
failure. Therefore, it is necessary to design underactuated
controllers to guarantee formation reconfiguration with
the loss of thrust in a certain direction. Compared to the
fully-actuated reconfiguration problems, fewer works deal
with the underactuated ones. Leonard et al. (1989) firstly
examined the feasibility of formation keeping by using
the differential drag between spacecraft that acts in the
in-track direction only. Kumar et al. (2007) designed a lin-
ear controller for SFF that uses the in-track thrust only.
Similar problem has also been investigated by Kumar
et al. (2011). Varma and Kumar (2012) proposed another
linear sliding mode controller (SMC) for SFF using the
in-track differential aerodynamic drag. Different from
aforementioned underactuated controllers with the loss of
radial thrust, Godard et al. (2014) designed SMCs for
underactuated SFF with the loss of either the radial or
the in-track thrust. As can be seen, current works mainly
concentrate on the feasibility of underactuated formation
reconfiguration in the absence of radial or in-track control,
but seldom solve optimal control problems of underactu-
ated reconfiguration. Since it is always desirable to perform

orbital maneuvers in a fuel-optimal or energy-optimal way,
optimal underactuated controllers for reconfiguration are
valuable to be designed. Furthermore, considering that
concise results could be obtained by using the linearized
dynamical system of SFF in circular orbits, the indirect
optimization method is adopted in this paper to derive pre-
cise analytical solutions to underactuated formation
reconfiguration.

Firstly, a linearized dynamical model of underactuated
SFF is introduced to conduct controllability analysis for
either underactuated case. Then, based on the controllabil-
ity analysis, indirect methods are used to derive analytical
solutions to underactuated formation reconfiguration. In
generating the optimal trajectories of reconfiguration for
either underactuated case, two kinds of final conditions
constraints are considered, namely, the fixed and free final
conditions. For the fixed final conditions, the terminal
relative state vector (i.e., final conditions constraints) has
been predetermined as a given one that satisfies the geom-
etry constraints for the final desired formation. However,
for the free final conditions, the terminal relative states
are not determined in advance but treated as optimization
variables subject to the geometry constraints of the final
formation. In other words, the terminal relative state vec-
tor is not a single fixed one but could be any feasible one
as long as the terminal geometry constraints are satisfied.
Comparisons are thus then made between the results
obtained with these two kinds of final constraints. Further-
more, considering the external disturbances, linearization
errors, and system uncertainties that may drift the desired
trajectory of reconfiguration, closed-loop adaptive SMCs
(ASMCs) have also been proposed to ensure optimal
trajectory tracking for both underactuated cases.

The organization of this paper proceeds as follows. The
dynamical model of underactuated SFF and the corre-
sponding controllability analysis are presented in Section 2.
Sections 3 and 4 introduce the indirect methods in
generating the open-loop optimal solutions to underactu-
ated reconfiguration with fixed and free final conditions,
respectively, followed by the closed-loop underactuated
controllers designed in Section 5. Theoretical results are
verified by the numerical simulations shown in Section 6,
and Section 7 concludes the paper.

2. Dynamical model of underactuated SFF

Consider a chief spacecraft in an Earth orbit and a
deputy spacecraft flying nearby, which constitutes a forma-
tion together with the chief. As shown in Fig. 1, OEX IY IZI

is an Earth-centered inertial frame with OE being the center
of Earth. OCxyz is a local vertical local horizontal (LVLH)
frame with its origin located at the center-of-mass (c.m.) of
the chief, OC, where x axis is along the radial direction, z
axis is aligned with the normal direction of the chief’s
orbital plane, and y axis completes the right-handed
Cartesian frame. OD is the c.m. of the deputy. The position
and velocity vectors of the deputy with respect to the chief
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