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Abstract

A Riccati-based tracking controller with collision avoidance capabilities is presented for proximity operations of spacecraft formation
flying near elliptic reference orbits. The proposed dynamical model incorporates nonlinear accelerations from an artificial potential field,
in order to perform evasive maneuvers during proximity operations. In order to validate the design of the controller, test cases based on
the physical and orbital features of the Prototype Research Instruments and Space Mission Technology Advancement (PRISMA) will be
implemented, extending it to scenarios with multiple spacecraft performing reconfigurations and on-orbit position switching. The results
show that the tracking controller is effective, even when nonlinear repelling accelerations are present in the dynamics to avoid collisions,
and that the potential-based collision avoidance scheme is convenient for reducing collision threat.
� 2015 COSPAR. Published by Elsevier Ltd. All rights reserved.
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1. Introduction

The idea of autonomous spacecraft flying in tight forma-
tion, with maximum separation baselines of a few hundred
meters, especially in low Earth orbits (LEOs), has gener-
ated widespread interest over the last several years. The
constantly evolving notion of spacecraft formation pro-
vides the means to enhance mission reliability and adapt-
ability to changing mission requirements by distributing
major tasks, which used to be commonly handled by a sin-
gle monolithic unit, among several smaller spacecraft,
therefore leading to technological and economic benefits
such as: mission robustness against unit loss by reconfigur-
ing the formation with the remaining satellites, weight
reduction in launch payload for tight formation missions,
miniaturization and mass production of spacecraft, etc.

Moreover, autonomy poses several advantages over tradi-
tional manual control, such as the reduction of ground-
based orbit maintenance, planning and scheduling by
knowing the future position and velocity of the spacecraft
at any time and lower propellant usage by continuously
maintaining the orbit at its highest level (De Florio et al.,
2014). Several autonomous formation flying missions
designed to demonstrate the feasibility of this technology
are currently deployed while others are still under develop-
ment, for example, TacSat2 (Plam et al., 2008), Demeter
(Lamy et al., 2009), TanDEM-X (Montenbruck and
Kahle, 2008) and PRISMA (D’Amico et al., 2013).

Nevertheless, autonomous formation flying presents dif-
ficult control challenges which rise in complexity as the
number of elements in the formation increases or when
proximity operations are required. Having a large number
of spacecraft in close formation requires to execute com-
plex maneuvers with minimal fuel consumption and
reliable collision avoidance systems. To account for these
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tasks, several control strategies have been studied; the lin-
ear quadratic regulator (LQR) applied to the control of
spacecraft information using the Clohessy–Wiltshire
(CW) (Clohessy and Wiltshire, 1960) model for circular ref-
erence orbits, was used by Starin (2001) where an infinite
time cost function was minimized by the algebraic Riccati
equation. Bainum et al. (2005) presented further studies
where the LQR was used along with the Tschauner and
Hempel (TH) (Tschauner and Hempel, 1965) model for
elliptic reference orbits. Capo-Lugo and Bainum (2007)
used the LQR and the TH model to maintain the separa-
tion distance between a pair of satellites for the NASA
Benchmark Tetrahedron Constellation. This was accom-
plished while providing minimum time and fuel consump-
tion through two different approaches, adapting the time-
varying term in the TH equations in a piecewise manner
and using the TH equations as a time-varying dynamical
system. Yoo et al. (2013) presented fuel balancing strategies
for maneuvers between projected circular orbits, subject to
the CW dynamics, formulating the optimal control prob-
lem from Palmer’s CW analytical solution for general con-
figurations (Palmer, 2006). Moreover, Huang et al. (2014)
used controlled Lorentz forces on an electrostatically
charged spacecraft as propellant less electromagnetic
propulsion for orbital maneuvering in the planetary mag-
netic field. For this purpose, a closed-loop integral sliding
mode controller was designed to effectively track a trajec-
tory when external disturbances are also present. Artificial
potential fields (APF) have been also applied to the control
of spacecraft in formation by strongly relying on the theory
of dynamical systems. Bennet and McInnes (2008) imple-
mented a control scheme based on attractive/repulsive
APF grounded in the theory of bifurcation to command
the formation keeping of spacecraft and the transition dur-
ing maneuvering, providing a wide variety of configura-
tions with only a single parameter change. Badawy and
McInnes (2008) used the concept of superquadric potential
fields, which allows the accurate modeling of the geometry
of any orbital element, for on-orbit assembly of large space
structures. McCamish et al. (2007) have also investigated
mixed control strategies, such as APF and LQR, to per-
form rendezvous and assembly maneuvers using the CW
relative dynamics near a circular orbit. In nonlinear control
with APF, Lee et al. (2015) developed a decentralized, six-
degree-of-freedom tracking control scheme using Lie group
theory and a Lennard-Jones potential. The simulated sce-
narios use a virtual leader approach and focus on forma-
tion keeping using highly elliptical reference orbits,
leading to almost global asymptotic convergence to the
desired trajectory.

The objective of this paper is to present the design of a
mixed LQR/APF tracking controller for close-
maneuvering spacecraft in formation using dynamics of
relative motion linearized near an elliptical reference orbit.
Contrasted with other LQR/APF formulations, the pro-
posed control strategy has the capacity to deal with both
circular and elliptical reference orbits, providing guidance

and tracking toward target nominal trajectories while opti-
mizing fuel consumption by Riccati procedure; addition-
ally, the collision avoidance scheme, generated from a
Gaussian-like potential function, is defined in terms of
both spacecraft and obstacle position and velocity, ensur-
ing evasive actions between the elements of the formation
using repelling accelerations. This paper starts presenting
first the equations of relative motion to be used, including
its state-space representation and energy matching condi-
tions for local bounded relative motion in Section 2. The
controller is then presented in Section 3, where the collision
avoidance guidance scheme is developed. Next, in Section 4,
the selected test cases and results are introduced using
elliptical reference orbits. Finally, conclusions are found
in Section 5.

2. Linear equations of relative motion

Consider two spacecraft orbiting around the Earth. One
of the spacecraft is called leader and the other the follower.
Let r and h denote the radius and the true anomaly of the
reference orbit of the leader spacecraft, respectively. In the
Local Vertical Local Horizontal (LVLH) reference frame,
the linear equations of the relative dynamics of the follower
with respect to the leader, in component-wise manner, can
be represented as (Inalhan et al., 2002)
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with n being the mean motion and e the eccentricity of the
reference orbit. A tracking dynamical system, capable of
following a nominal trajectory, can be designed in matrix
representation using Eq. (1), adding a control input

u 2 R3 and a nonlinear term N 2 R6 to account for external
perturbations. With the definition of the tracking vector

between the current state x ¼ ½ x y z _x _y _z �T and

the nominal state xn ¼ ½ xn yn zn _xn _yn _zn �T as

dx ¼ x� xn 2 R6, the tracking dynamics can be repre-
sented as

d _xðtÞ ¼ AðtÞdxðtÞ þ BðtÞduðtÞ þ dN ð2Þ
where du ¼ u� un and dN ¼ N�Nn. The dynamics matrix

A 2 R6�6 and the control matrix B 2 R6�3 are defined as
follows (Bate et al., 1971)

AðtÞ ¼ 03 I3
~A �A

� �
B ¼ 03

I3

� �

�A ¼
0 2 _h 0

�2 _h 0 0

0 0 0

2
64

3
75 ~A ¼

a41 €h 0

�€h a52 0

0 0 a63

2
64

3
75

ð3Þ

2168 L. Palacios et al. / Advances in Space Research 56 (2015) 2167–2176



Download English Version:

https://daneshyari.com/en/article/1763565

Download Persian Version:

https://daneshyari.com/article/1763565

Daneshyari.com

https://daneshyari.com/en/article/1763565
https://daneshyari.com/article/1763565
https://daneshyari.com

