

Available online at www.sciencedirect.com

ADVANCES IN SPACE RESEARCH (a COSPAR publication)

Advances in Space Research 56 (2015) 773-824

www.elsevier.com/locate/asr

Thermospheric mass density: A review

J.T. Emmert

Space Science Division, U.S. Naval Research Laboratory, Washington, District of Columbia, USA

Received 3 April 2015; received in revised form 26 May 2015; accepted 27 May 2015 Available online 4 June 2015

Abstract

The mass density of Earth's thermosphere (\sim 90–600 km altitude) is a critical parameter for low Earth orbit prediction because of the atmospheric drag on satellites in this region. In this review, we first survey techniques for measuring thermospheric density, empirical models that provide a synthesis of historical data, and physical models that simulate the environment by solving fluid equations. We then review the climate and weather features that are observed in thermospheric density (including its response to solar forcing) and summarize recent studies of these features. The review is focused on results published between 2000 and 2014, which coincides with a period of extensive accelerometer measurements of density and accompanying research; some historical context is also provided. Published by Elsevier Ltd. on behalf of COSPAR.

Keywords: Thermosphere; Mass density

Contents

1.	Intro	duction	774
2.	Dens	ity measurements	775
	2.1.	Drag-derived mass density	775
		2.1.1. Orbit-derived mass density	775
		2.1.2. Accelerometers	776
		2.1.3. Ballistic coefficient estimation	777
		2.1.4. Drag Balance Instruments	777
	2.2.	Neutral Mass Spectrometers	777
	2.3.	Ultraviolet remote sensing	777
	2.4.	Other techniques	778
3.	Dens	ity models	778
	3.1.	Basic physical considerations	778
	3.2.	Empirical models	781
	3.3.	Physical models.	782
4.	Dens	ity climate	785
	4.1.	Local time-latitude dependence and migrating solar tides	785
	4.2.	Solar irradiance response	786
	4.3.	Global intra-annual variations	789
		4.3.1. Lower and middle atmosphere mechanisms	790
		4.3.2. Internal Mechanisms.	791
		4.3.3. Solar mechanisms	792

http://dx.doi.org/10.1016/j.asr.2015.05.038 0273-1177/Published by Elsevier Ltd. on behalf of COSPAR.

E-mail address: john.emmert@nrl.navy.mil

	4.4.	Seasonal-latitudinal variations	/92
	4.5.	Geomagnetic activity response	792
	4.6.	High-latitude density features	795
	4.7.	Nonmigrating tides and longitude dependence	797
	4.8.	Equatorial density anomaly	799
	4.9.	Midnight density maximum	801
	4.10.	Other climatological variations	802
	4.11.	Long-term density trends	802
5.	Densi	ity weather	804
	5.1.	Nowcasting and forecasting	804
	5.2.	Time-dependent response to the solar wind and IMF	804
		5.2.1. CIRs and recurrent geomagnetic activity.	806
	5.3.	Solar cycle 23/24 minimum	807
	5.4.	Lower atmospheric and in situ wave forcing	807
		5.4.1. Traveling planetary waves	807
		5.4.2. Stratospheric sudden warmings	808
		5.4.3. Gravity waves	809
		5.4.4. Acoustic waves.	810
		5.4.5. Quasi-biennial oscillation.	811
	5.5.	Effect of density variance on orbit prediction.	811
6.	Sumn	nary	811
	6.1.	Summary of data and models.	811
	6.2.	Summary of climate features	812
	6.3.	Summary of weather features	813
	Ackn	owledgments	813
	Appe	ndix A. List of acronyms	813
	Refer	ences	814

1. Introduction

The thermosphere (~90–600 km altitude) and exosphere (>600 km) are a hot, partially ionized gas consisting primarily of N₂, O₂, O, He, and H. The mass density of this gas falls off exponentially with increasing altitude, with scale heights of 25–75 km in the upper thermosphere. At an altitude of 400 km, where many active satellites orbit, including the International Space Station, the density is typically only 2 g per cubic kilometer, but this is large enough to measurably impede the motion of orbiting objects and is a critical consideration in the planning of satellite missions and lifetimes, orbit and reentry prediction, and collision avoidance.

Thermospheric density variations are driven in large part by variations in solar ultraviolet (UV) irradiance, which is the thermosphere's primary heating source. Changes in UV irradiance cause the thermosphere to expand (more UV) or contract (less UV), so that density at a given altitude increases or decreases, respectively. Other major drivers of density variations are electrical energy and energetic particles from the magnetosphere and solar wind, and waves originating in the lower atmosphere that propagate upward into the thermosphere. In addition to the exponential vertical dependence, density varies horizontally (latitude and longitude) and with local time and day of year.

In this paper, we review our understanding of the behavior of thermospheric mass density, including its climate, short-term variations, and long-term changes. Many upper atmospheric density measurements extend well into the exosphere, as does satellite drag. Accordingly, we consider both the thermosphere and exosphere in this review, although the main focus is on the upper thermosphere (\sim 200–600 km). For simplicity, we use "thermosphere" to refer to both the thermosphere and exosphere. We also use "density" to refer to mass density (in contrast to number density), unless otherwise noted.

Review papers generally aim toward one or more of the following objectives: (1) a comprehensive summary of the literature during a selected time interval; (2) a critical synthesis of existing knowledge; (3) a historical account of the development of the knowledge; or (4) a tutorial for newcomers to the field. Thermospheric density is a rather broad topic, being a property of the environment driven by many mechanisms and closely connected to other properties. This makes it very difficult to achieve a critical synthesis or historical account in a single paper. The primary aim of this review is a comprehensive summary of the literature between 2000 and 2014. However, for each subtopic, brief syntheses are attempted, and seminal contributions are cited to provide historical context. Some tutorial content is also provided for orientation.

Although temperature and density are closely related, in our survey we mainly consider papers that deal explicitly with mass density. The 2000–2014 period that we focus on coincides with the extensive measurements made by Download English Version:

https://daneshyari.com/en/article/1763816

Download Persian Version:

https://daneshyari.com/article/1763816

Daneshyari.com