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Abstract

In this study, a neuro-fuzzy controller (NFC) was developed for spacecraft attitude control to mitigate large computational load of
the state-dependent Riccati equation (SDRE) controller. The NFC was developed by training a neuro-fuzzy network to approximate the
SDRE controller. The stability of the NFC was numerically verified using a Lyapunov-based method, and the performance of the
controller was analyzed in terms of approximation ability, steady-state error, cost, and execution time. The simulations and test results
indicate that the developed NFC efficiently approximates the SDRE controller, with asymptotic stability in a bounded region of angular
velocity encompassing the operational range of rapid-attitude maneuvers. In addition, it was shown that an approximated optimal
feedback controller can be designed successfully through neuro-fuzzy approximation of the optimal open-loop controller.
� 2015 COSPAR. Published by Elsevier Ltd. All rights reserved.
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1. Introduction

Many nanosatellites are circulating around the Earth
performing numerous valuable missions involving the
testing of new space technologies. Utilization of groups
of small satellites is becoming increasingly popular because
of the low cost involved in their development and launch-
ing. Concomitantly, major possibilities exist for developing
novel space technologies that enable multiple small satellite
systems to perform as well as or better than single conven-
tional large satellites. One of the significant limitations of
small satellite systems, however, is that their computing
ability is insufficient to handle complicated guidance,
navigation, and control (GNC) algorithms. Although

technologies are currently being developed to enhance the
computing ability of small satellites, the heavy computa-
tional loads involved still render such systems costly in several
respects. Consequently, there is a persistent need for simpler
GNC algorithms with reduced computational burdens that
are suited to the limited resources of small satellites.

The state-dependent Riccati equation (SDRE) technique
has been used in numerous applications in the control field
(Chang et al., 2009,2010; Abdelrahman et al., 2011;
Abdelrahman and Park, 2011; Park et al., 2011). The
SDRE control technique can be seen as a type of piecewise
application of a linear quadratic regulator (LQR) because
it calculates control signals at every time step by solving
the algebraic Riccati equation in the same manner as an
LQR. The SDRE controller is robust and yields a subopti-
mal solution for minimizing a cost function that contains
both state error and control effort terms. One drawback
of the SDRE control technique, however, is that the alge-
braic Riccati equation has to be solved for every sampling

http://dx.doi.org/10.1016/j.asr.2015.09.016

0273-1177/� 2015 COSPAR. Published by Elsevier Ltd. All rights reserved.

⇑ Corresponding author at: Astrodynamics and Control Lab., Depart-
ment of Astronomy, Yonsei University, Seoul 120-749, Republic of
Korea. Tel.: +82 2 2123 5687; fax: +82 2 392 7680.

E-mail address: spark624@yonsei.ac.kr (S.-Y. Park).

www.elsevier.com/locate/asr

Available online at www.sciencedirect.com

ScienceDirect

Advances in Space Research 57 (2016) 137–152

http://dx.doi.org/10.1016/j.asr.2015.09.016
mailto:spark624@yonsei.ac.kr
http://dx.doi.org/10.1016/j.asr.2015.09.016
http://crossmark.crossref.org/dialog/?doi=10.1016/j.asr.2015.09.016&domain=pdf


time, which consumes a significant amount of time to cal-
culate a control signal.

An adaptive neuro-fuzzy system called the adaptive
neuro-fuzzy inference system (ANFIS) was proposed by
Jang (1993). ANFIS is based on a neural network and
the first-order Takagi–Sugeno (TS) fuzzy model. The neu-
ral network provides the ability to learn from data, while
the fuzzy model makes it possible to incorporate human
knowledge in a systematic way. By combining the neural
network and fuzzy model in such a manner that the param-
eters of the fuzzy network are adjusted by an appropriate
learning algorithm, ANFIS is able to approximate any sys-
tem whose mathematical model is unknown or difficult to
obtain. The ANFIS proposed by Jang (1993) is trained
by a hybrid learning rule that operates in a two-way
sequence of backward and forward learning. In backward
learning, the premise parameters are adjusted by a
backpropagation algorithm, whereas in forward learning,
the consequent parameters are updated by a least squares
estimator (LSE). Several other training methods have been
developed and applied to ANFIS, as described in the liter-
ature (Ghomsheh et al., 2007; Choi et al., 2007). Through
the training process, the sum of the squared errors between
the outputs of ANFIS and the target system is minimized,
making ANFIS a universal approximator of any target sys-
tem whose mathematical model is unavailable. ANFIS has
been used extensively for parameter estimation (Tahmasebi
and Hezarkhani, 2010), model prediction (Kurian et al.,
2006; Aldrian and Djamil, 2008; Tektas�, 2010; Sivarao
et al., 2009), and control (Mitra et al., 2007; Kabini,
2011; Jang and Sun, 1995; Lutfy et al., 2011).

Chen and Teng (1995) presented a model reference con-
trol approach that uses fuzzy neural networks (FNN).
They used two FNNs: one for control (an FNN controller,
or FNNC) and the other for plant identification (an FNN
Identifier, or FNNI). The learning of the FNNC and
FNNI was performed online via gradient descent (GD),
with adaptation to system changes, and the convergence
of the learning error was guaranteed by a Lyapunov func-
tion. However, the convergence of the learning error does
not guarantee the convergence of the controller. Moreover,
real-time applications may be infeasible because the online
learning process is time consuming. Zhang et al. (2002)
designed a neuro-fuzzy controller by training a neuro-
fuzzy network using the training data obtained from a pro
portional–integral–derivative (PID) controller and showed,
through spacecraft attitude control simulations, that a
neuro-fuzzy controller is more robust to external distur-
bances and dynamic uncertainty than a PID controller.
Lakshmi and Nabi (2012) trained an ANFIS using space-
craft attitude and rate control simulation results based on
a proportional–derivative (PD) controller. They compared
their ANFIS controller to the PD controller in terms of
control accuracy for a 10% uncertainty in the moment of
inertia of the spacecraft, and showed that the ANFIS con-
troller performed better than the PD controller. Also,
Pelusi (2013) presented an algorithm for optimal selection

of the training data which has much applicability in design-
ing neuro-fuzzy controller.

The neuro-fuzzy approach can be used to overcome the
drawbacks of the SDRE control technique. To solve the
time-consumption problem associated with SDRE con-
trollers, Kim et al. (2012) designed an ANFIS controller
trained by an SDRE controller. They used subtractive
clustering (Chiu, 1994) for initialization of the ANFIS to
prevent an exponential increase in the number of rules with
the number of states. The asymptotic stability of the
ANFIS controller was analyzed using the Lyapunov
approach. In an effort to reduce the computational load
of the SDRE controller, Abdelrahman and Park (2013)
proposed a hybrid controller in which a modified SDRE
(MSDRE) controller is combined with an ANFIS con-
troller trained by the MSDRE controller. They presented
a Monte Carlo simulation to analyze the stability of the
hybrid controller. The stability analyses presented in Kim
et al. (2012) and Abdelrahman and Park (2013) were
deemed insufficient for several reasons, as discussed in
Section 4. Among the studies on designing controllers
using neuro-fuzzy networks with the learning-from-data
approach, apart from the work of Kim et al. (2012) and
Abdelrahman and Park (2013), stability analysis of
closed-loop systems is rare.

To design a more stable neuro-fuzzy controller (NFC)
with better performance than the controllers developed
by Kim et al. (2012) and Abdelrahman and Park (2013),
a simplified NFC based on an SDRE controller was
developed in this study and applied to the problem of
spacecraft attitude and angular velocity control. The
NFC was designed by training the adaptive parameters
of a neuro-fuzzy network, based on a fuzzy model pro-
posed by Kluska (2009), using the state-control data pairs
of an SDRE controller. The fuzzy model is a zero-order TS
fuzzy model with linear membership functions. The
training data pairs were obtained through SDRE control
simulations, using several different initial conditions, and
had two inputs and one output, where the inputs were state
error and the output was a control signal. In this study, the
trained NFC was used to acquire the characteristics of the
SDRE controller, such as suboptimality and robustness,
while consuming much less execution time than the SDRE
controller. The training algorithm used in this study to
update consequent parameters with the premise parameters
fixed was the recursive least squares estimator (RLSE)
algorithm. A GD algorithm can be used in the training pro-
cess to update the premise parameters. This GD algorithm
operates sequentially with the LSE to minimize the training
error. In this process, the training error is drastically
decreased by one-time execution of the LSE and then
gradually decreases by a small amount as a result of the
effect of the GD. However, the smaller training error does
not guarantee better performance of the NFC (Niestroy,
1996). Thus, in this study, the GD was omitted in the train-
ing process for simplicity of training. As a derivative-free
global optimization technique, genetic algorithm (GA)
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