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Abstract

Variable Endmember Constrained Least Square (VECLS) technique is proposed to account endmember variability in the linear mix-
ture model by incorporating the variance for each class, the signals of which varies from pixel to pixel due to change in urban land cover
(LC) structures. VECLS is first tested with a computer simulated three class endmember considering four bands having small, medium
and large variability with three different spatial resolutions. The technique is next validated with real datasets of IKONOS, Landsat
ETM+ and MODIS. The results show that correlation between actual and estimated proportion is higher by an average of 0.25 for
the artificial datasets compared to a situation where variability is not considered. With IKONOS, Landsat ETM+ and MODIS data,
the average correlation increased by 0.15 for 2 and 3 classes and by 0.19 for 4 classes, when compared to single endmember per class.
� 2013 COSPAR. Published by Elsevier Ltd. All rights reserved.
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1. Introduction

Urban areas are currently among the most rapidly
changing land cover (LC) types on the Earth. Urban cities
are the loci of human population and activities, and are
therefore sites of significant natural resource transforma-
tion (Lambin et al., 2001). Remote sensing (RS) has been
widely used to provide a timely and synoptic view of urban
LC (Kumar et al., 2011b; Yang and Lo, 2002). More often

than not, the accuracy of urban LC mapping is limited by
the presence of mixed pixels (Kumar et al., 2008). Deriving
accurate, quantitative measures over urban area remains a
fundamental research challenge due to the great spatial and
spectral variability of the materials (Forster, 1985; Lu and
Weng, 2004; Xian and Crane, 2005). In highly variable
scenes, spatial heterogeneity (in the types and conditions)
of endmembers of urban surface materials is problematic
at multiple spatial scales, resulting in a high percentage
of mixed pixels in most moderate to low spatial resolution
imagery and occasionally, even limiting the utility of high
spatial resolution imagery (Myint et al., 2004; Small,
2005; Somers et al., 2011).

There are two principal approaches to retrieve informa-
tion on LC from multispectral (MS) satellite images. The
most common approach to characterise LC from RS data
is hard classification; assigning all pixels in the image to
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mutually exclusive classes such as built-up, water, vegeta-
tion, etc. (Carlson and Sanchez-Azofeifa, 1999; Kumar
et al., 2011c; Powell et al., 2007) generating a thematic
map at the resolution of the bands. This approach is prob-
lematic for several reasons – firstly, most urban LC classes
are not spectrally distinct resulting in considerable confu-
sion between classes (Small, 2005). Secondly, physical com-
position of the classes may vary due to different building
materials and different construction practices and therefore
cross regional comparisons between urban areas are limited
(Small, 2005). This method depends on the assumption that
two signals corresponding to one cover type are much more
similar to each other than the two signals from different
cover types (Settle, 2006). Another approach is linear
unmixing – the linear mixture model (LMM), which allows
a number of different LC types to be present, each contrib-
uting a fraction of its (unique, fixed) spectrum where frac-
tion corresponds to the area occupied by that LC type
which is obtained by inverting the model to produce esti-
mates of those fractional abundances. The spectral signa-
ture (endmember) for each class may be obtained from
the image itself (Bateson et al., 2000; Boardman, 1995;
Kumar et al., 2008, 2012; Plaza et al., 2004; Settle, 2006;
Winter and Winter, 2000) or from libraries of reference
spectra (Dennison and Roberts, 2003). The selection of
endmembers involves identifying both the number and type
of endmembers and their corresponding spectral signa-
tures. Various approaches for selecting endmembers have
been proposed (refer Plaza et al., 2004, 2005; Martinez
et al., 2006; Miao and Qi, 2007; Dobigeon et al., 2009,
etc.). However, the use of fixed endmember spectra does
not take into account the variation in endmember spectral
signatures caused by differential illumination conditions,
spatial and temporal variability in the scene components
resulting in significant fraction estimate errors.

The pixel-to-pixel variability in an image can be
explained in two different ways as described by Settle
(2006). Firstly, the main distinction is between pixels of dif-
ferent LC types, with further variation coming from
within-class variability. Secondly, there is no within-class
variability, but the variations in reflectance within the pix-
els arise from pixel-to-pixel variations in the fractional cov-
erage. This could lead us to infer that if the intrinsic scale of
the pixel is smaller than the changes in LC type, hard clas-
sification is justified, while unmixing is appropriate when
the case is reverse, given the underlying class membership
model. The fundamental reason for this variability is the
issue of scale and hence toggling between the two models
for addressing the variability in surface reflectance may
not be appropriate. The phenomenon of variability is pre-
valent at a fine scale and it is unreasonable to ignore the
effect of variability in pure LC classes at sufficiently high
resolution while observing the same at a moderate or
coarse resolution (Settle, 2006). Standard LMM assumes
a fixed number of representative endmembers and the
entire image is modeled in terms of those spectral compo-
nents. However, urban environments are particularly

difficult to model because a single endmember cannot
account for considerable spectral variation within a class
as they exhibit high degrees of spectral heterogeneity on
fine scales. The procedure is limited because the selected
endmember spectra may not effectively model all the ele-
ments in the image, or a pixel may be modeled by endmem-
bers that do not actually correspond to the materials
located in its field of view and result in decreased accuracy
of the estimated fractions (Sabol et al., 1992). Thus, for
each pixel, it may sometimes be more appropriate to recog-
nise that a distribution of possible coverage may be derived
for each class. The width of this distribution is a function
of the degree of intra-class spectral variation (variability
within the endmember class) present and will impact on
the use of the sub-pixel classification output.

Various attempts have been made to address endmem-
ber variability. Somers et al. (2011) presented a detailed
review of the available methods and results of endmember
variability reduction in spectral mixture analysis based on
the hypothesized five principles which are reviewed at the
end of Section 3 (after the conceptual framework of VEC-
LS algorithm). In recent times, numerous solutions (Som-
ers et al., 2010a,b) to account endmember variability
have been proposed including the hierarchical Multiple
Endmember Spectral Mixture Analysis (MESMA, Roberts
et al., 1998) applied to map urban LC in Bonn, Germany,
with a Hymap (126 spectral bands) and 4 levels of classifi-
cation using 1521 endmembers obtained using EAR,
MASA and COB (Franke et al., 2009). MESMA was also
applied on Landsat ETM+ with four endmembers (vegeta-
tion, impervious surface, soil and water) for Manaus, Bra-
zil (Powell et al., 2007). Foody and Doan (2007) reported
the impact of intra-class spectral variability on the estima-
tion of sub-pixel LC class composition concluding that
class variation has an impact on the accuracy of sub-pixel
class composition estimation, as it violates the assumption
that a class can be represented by a single endmember. Set-
tle (2006) attempted to derive an improved representation
of error term in the mixture model, taking account of the
variability of the endmember spectra and of sub-pixel var-
iation in fraction abundance of surface cover. Song (2005)
proposed a Bayesian spectral mixture analysis (BSMA)
model to understand the impact of endmember variability
on the deviation of sub-pixel vegetation fractions in an
urban environment. This approach is similar to iterative
mixture analysis, i.e., each pixel is unmixed with randomly
selected combinations of endmember signatures, repre-
sented by probability density functions. BSMA accounts
the probabilities of spectral signatures instead of assuming
equal probabilities for all endmembers. Bateson et al.,
(2000) constructed endmember bundles to produce mini-
mum and maximum fraction images bounding the correct
cover fractions and specifying error due to endmember var-
iability. Recently, a pre-screened and normalised MESMA
which includes a new endmember selection strategy and an
integration of the normalised spectral mixture analysis
(NSMA) and MESMA for estimating impervious surface

2016 U. Kumar et al. / Advances in Space Research 52 (2013) 2015–2033



Download	English	Version:

https://daneshyari.com/en/article/1764103

Download	Persian	Version:

https://daneshyari.com/article/1764103

Daneshyari.com

https://daneshyari.com/en/article/1764103
https://daneshyari.com/article/1764103
https://daneshyari.com/

