

Available online at www.sciencedirect.com

Advances in Space Research 55 (2015) 434-439

ADVANCES IN SPACE RESEARCH (a COSPAR publication)

www.elsevier.com/locate/asr

Collisional excitation of thioformaldehyde and of Silylidene

M.K. Sharma^a, Monika Sharma^a, U.P. Verma^a, Suresh Chandra^{b,*}

^a School of Studies in Physics, Jiwaji University, Gwalior 474 011 (M.P.), India ^b Physics Department, Lovely Professional University, Phagwara 144411 (Punjab), India

Received 21 August 2014; received in revised form 23 September 2014; accepted 25 September 2014 Available online 6 October 2014

Abstract

For analysis of spectrum of a molecule in the interstellar medium, radiative and collisional transition probabilities for rotational transitions in the molecule are required. We have calculated collisional rate coefficients for rotational transitions in ortho and para thioformaldehyde (H₂CS), and in ortho and para Silylidene (H₂CSi) due to collisions with He atom for kinetic temperatures 10, 20, 30, 40 and 50 K, following the procedure discussed in our earlier work. The accuracy of collisional rate coefficients may be within a factor of 2. © 2014 COSPAR. Published by Elsevier Ltd. All rights reserved.

Keywords: ISM: molecules; H2CS; H2CSi; Collisional rate coefficients

1. Introduction

 H_2CS was first identified by Sinclair et al. (1973) through its $2_{11} - 2_{12}$ transition at 3.139 GHz in the direction of Sgr B2 in absorption. Since then it has been observed in many molecular clouds (see e.g., Minh et al. (1991), Kaifu et al. (2004)) as well as in the envelope of IRC + 10216 (Agundez et al., 2008). Out of the molecules identified in the interstellar space, some are Si-bearing. The Si-bearing molecules identified in the cosmic objects are SiN, SiC, SiO, SiS, *c*-SiC₂, SiCN, SiNC, *c*-SiC₃, C₄Si, SiH₄. The search for identification of H₂CSi in the interstellar medium has been unsuccessful (Izuha et al., 1996).

In most regions of interstellar space, the excitation of molecules (and atoms) deviates strongly from that under the local thermal equilibrium (LTE) conditions. Therefore, a quantitative interpretation of observed interstellar molecular lines requires the simultaneous solution of statistical equilibrium equations coupled with the equations of radiative transfer for a large number of lines. As the input parameters, one has to know the radiative and collisional transition probabilities. Information about a number of molecules is available on some databases. However, no collisional data about H_2CS and about H_2CS are available in those databases.

We have calculated collisional rate coefficients for transitions between 23 rotational levels in each of ortho and para H₂CS, and 25 rotational levels in each of ortho and para H₂CSi, colliding with He atoms, using the method used by Sharma et al. (2014a,b). The colliding partner is assumed to be structureless and we have taken it as the He atom. Wave functions and the energy levels have been obtained by using the rotational and distortional constants derived by Maeda et al. (2008) for H₂CS, and by Izuha et al. (1996) for H₂CSi.

2. Wave functions

The required rotational and distortional constants for H_2CS have been obtained by Maeda et al. (2008) and for H_2CSi have been obtained by Izuha et al. (1996). The energies *E* and *g*-coefficients for positive values of *K* for

^{*} Corresponding author. *E-mail addresses:* mohitkumarsharma32@yahoo.in (M.K. Sharma), monika3273@yahoo.in (M. Sharma), upv.udai@gmail.com (U.P. Verma), suresh492000@yahoo.co.in (S. Chandra).

Table 1 Wave functions and energies for ortho-H₂CS.

No.	Level	$E(\mathrm{cm}^{-1})$	$\epsilon_{J\tau}$	$g^1_{J au}$	$g^3_{J au}$	$g_{J au}^5$	$g_{J au}^7$	$g^9_{J au}$	$g^{11}_{J au}$
1	1 ₁₁	10.274713	+	0.7071068					
2	110	10.309596	_	0.7071068					
3	212	12.529841	+	0.7071068					
4	211	12.634487	_	0.7071068					
5	313	15.912434	+	0.7071065	0.0006517				
6	312	16.121722	_	0.7071065	0.0006536				
7	414	20.422377	+	0.7071055	0.0013344				
8	413	20.771175	_	0.7071055	0.0013408				
9	515	26.059512	+	0.7071034	0.0021765	0.0000012			
10	514	26.582682	_	0.7071034	0.0021921	0.0000012			
11	6 ₁₆	32.823645	+	0.7070996	0.0031815	0.0000032			
12	615	33.556036	_	0.7070995	0.0032135	0.0000033			
13	717	40.714546	+	0.7070934	0.0043491	0.0000069	0.0000000		
14	716	41.690986	_	0.7070930	0.0044075	0.0000070	-0.0000000		
15	818	49.731943	+	0.7070840	0.0056781	0.0000126	-0.0000000		
16	817	50.987239	_	0.7070832	0.0057764	0.0000129	-0.0000000		
17	9 ₁₉	59.875532	+	0.7070705	0.0071667	0.0000210	0.0000000	0.0000055	
18	9 ₁₈	61.444461	_	0.7070689	0.0073221	0.0000216	-0.0000000	-0.0000602	
19	101 10	71.144970	+	0.7070518	0.0088129	0.0000327	0.0000001	0.0000732	
20	1019	73.062270	_	0.7070489	0.0090469	0.0000339	0.0000000	-0.0000202	
21	11.11	83.539882	+	0.7008340	0.0105212	0.0000482	0.0000001	0.0000338	0.0933863
22	111 10	85.840241	_	0.7048117	0.0109190	0.0000505	0.0000001	-0.0000203	-0.0558684
23	3 ₃₁	89.136782	+	-0.0006517	0.7071065				

Table 2

Wave functions and energies for para-H $_2$ CS.

No.	Level	$E(\mathrm{cm}^{-1})$	$\epsilon_{J\tau}$	$g^0_{J au}$	$g^2_{J au}$	$g^4_{J au}$	$g^6_{J au}$	$g^8_{J au}$	$g^{10}_{J au}$
1	000	0.000000	+	1.0000000					
2	101	1.145047	+	1.0000000					
3	2_{02}	3.435027	+	0.9999986	0.0011676				
4	303	6.869708	+	0.9999932	0.0026107				
5	404	11.448748	+	0.9999796	0.0045217	0.0000028			
6	505	17.171684	+	0.9999523	0.0069064	0.0000085			
7	606	24.037945	+	0.9999046	0.0097659	0.0000191	-0.0000000		
8	707	32.046840	+	0.9998284	0.0130995	0.0000366	0.0000000		
9	221	40.013951	_	0.0000000	0.7071068				
10	2_{20}	40.014050	+	-0.0016512	0.7071058				
11	808	41.197570	+	0.9997141	0.0169060	0.0000634	0.0000001	0.0000766	
12	322	43.448614	_	0.0000000	0.7071068				
13	321	43.449112	+	-0.0036921	0.7071019				
14	423	48.028017	_	0.0000000	0.7071065	0.0005945			
15	422	48.029510	+	-0.0063946	0.7070921	0.0005945			
16	9 ₀₉	51.489220	+	0.9995512	0.0211832	0.0001021	0.0000002	0.0000032	
17	5 ₂₄	53.752034	_	0.0000000	0.7071058	0.0011676			
18	5 ₂₃	53.755516	+	-0.0097672	0.7070721	0.0011675			
19	6 ₂₅	60.620504	—	0.0000000	0.7071044	0.0018461	0.0000009		
20	624	60.627467	+	-0.0138111	0.7070369	0.0018460	0.0000009		
21	$10_{0,10}$	62.920765	+	0.9967047	0.0258599	0.0001555	0.0000003	-0.0000210	-0.0511971
22	726	68.633239	_	0.0000000	0.7071019	0.0026348	0.0000024		
23	725	68.645769	+	-0.0185256	0.7069805	0.0026346	0.0000024		

23 rotational levels of ortho and para of H₂CS, and 25 rotational levels of ortho and para of H₂CSi have been calculated following (Sharma et al., 2014a,b) and are presented in Tables 1 and 2 for ortho and para, respectively, and in Tables 3 and 4 for ortho and para H₂CSi, respectively. For a given rotational quantum number J, the K is the projection of J on the axis of symmetry and can assume the values from -J to +J with increment of one.

The τ is a pseudo quantum number which also can assume the values from -J to +J with increment of one. For negative values of K, we have the relation:

$$g_{J\tau}^{-K} = \epsilon_{J\tau} g_{J\tau}^{K}$$

where the value of the phase factor $\epsilon_{J\tau}$ for the level is given in the tables.

Download English Version:

https://daneshyari.com/en/article/1764144

Download Persian Version:

https://daneshyari.com/article/1764144

Daneshyari.com