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Abstract

Considering a point of polar coordinates (r, v) on an elliptic orbit of semi-major axis a, we set up and compare two algorithms based
on recurrence relations to compute the Hansen-like coefficients Z”, which are the coefficients of the expansion of (r/a)" expimv in
Fourier series of the eccentric anomaly. Both Hansen-like coefficients and their derivatives with respect to the eccentricity are considered,
with a special focus on the case 0 < |m| < n arising in the expression of the gravity potential due to a body external to the elliptic orbit.
We provide two efficient algorithms to compute a table of coefficients with a simple recursive process. One algorithm uses some recur-
rence relations linking directly to the Z"" whereas the other algorithm involves the generalized Laplace coefficients bk (Laskar, 2005).
Numerical behavior of the algorithms is investigated for low and high eccentricities. Both algorithms provide a relatlve accuracy better

than 10~ for n < 30. Also, they are at least 10 time faster than an algorithm based on the FFT method (Klioner et al., 1997).

© 2012 COSPAR. Published by Elsevier Ltd. All rights reserved.

Keywords: Hansen-like coefficients; Recurrence relations; Eccentric anomaly; Highly elliptical orbit; Third-body; Closed-form

1. Introduction

The development of some functions of the Cartesian
coordinates in trigonometric series of angular orbital ele-
ments is a corner stone of celestial mechanics (e.g. Tisserand,
1889). This is particularly useful in order to express the
disturbing function in terms of orbital elements so as to con-
struct analytical theories by means of averaging transforma-
tions. The paradigm of this problem is the use of the Hansen
coefficients X7 such that

-
- = xum( M,
(a) expimy = Z e)expis

§=—00

(1.1)

where n and m € Z, 1 = +/—1,r is the radius vector, a the
semi-major axis, e the eccentricity, M the mean anomaly
and v the true anomaly.
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The main advantage of this development is that it is
expressed as a function of the mean anomaly. The mean
anomaly is time linear in case of unperturbed two-body
problem and belongs to the set of Delaunay canonical vari-
ables. Unfortunately, the convergence of this Fourier series
can be very slow as soon as the eccentricity of the orbit is
no longer small. It even becomes useless when the eccen-
tricity is close to 1. In such a situation, a valuable solution
is to use finite Fourier series of the true anomaly if n < 0
(as done by Brouwer (1959) for the perturbation by the
gravity potential of the central body), or finite Fourier
series of the eccentric anomaly E if n > 0 (e.g. for the devel-
opment of the perturbation by an external body). In the
latter case, the so-called Hansen-like coefficients Z["
(Brumberg, 1995) are involved:

Nt S .
(;) expimv = Z Z"expis E.

§=—00

(1.2)

We have used these coefficients to develop the expression
of the disturbing gravity potential due to an external body
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as a function of the eccentric anomaly (Lion and Métris,
2011) and we are constructing an analytical theory of the
motion using this expression. This formulation has the
advantage to provide an exact expression without trunca-
tion, excepted with respect to the ratio a/a’ between the sa-
tellite and the third body semi-major axes. Of course, as in
the Brouwer’s case, the theory in closed form is more diffi-
cult to elaborate than a theory using truncated expressions
in mean anomaly. We will present our solution in a forth-
coming paper.

When a theory using the Z!"™" coefficients has been devel-
oped, the question of their evaluation arises. Two main
options are possible: evaluating directly the coefficients
from their analytical expression or using recurrence rela-
tions. Generally, direct expressions are faster for comput-
ing a small number of coefficients whereas recurrence
relations are more efficient to evaluate a full table of coef-
ficients. An alternative method consists in computing the
Fourier coefficients by means of Fast Fourier Transform
(FFT) (Klioner et al., 1997). To express the Hansen-like
coefficients Z!"", we have at our disposal their formulation
by means of hypergeometric functions (Brumberg, 1995) or
by means of generalized Laplace coefficients (Laskar,
2005). To our knowledge, there are few works about recur-
rence relations for the Z!™ coefficients. An attempt was
published by Vinh (1970) who established basic recurrence
formulae and presented a simple algorithm to compute the
series expansions (1.2). However, his numerical scheme is
not stable for large value of m due to the divisor e.

The aim of this article is to establish precise and explicit
algorithms to compute the coefficients Z?" and to test their
efficiency. More precisely, we propose and compare two
algorithms: the first (named Z-algorithm in the following)
uses some recurrence relations linking directly these coeffi-
cients whereas the second algorithm (named b-algorithm)
involves the generalized Laplace coefficients bf;‘r (Laskar,
2005). The paper is organized as follows. In Section 2, we
recall the expressions of the Fourier coefficients Z" in
terms of hypergeometric functions. We present in Section
3 the recurrence relations used for the Z-algorithm in
Section 4 and we discuss the methods for computing deriv-
atives. In Section 4, we focus on the computation of a table
of coefficients Z!™ and their derivatives in the case
0 < |m| < n. Finally, the efficiency and the stability of the
algorithms are investigated in Section 5 for low and high
eccentricities (e = 0.01 and e = 0.8) and for large indices
(0<n<30and 0 < m < n).

2. Expression of Hansen-like coefficients

Let
r n .
D, = <7> expimy (2.1)
a
be the elliptic motion functions and
n=vVi-e, p=o— (2.2)

149

the classical parameters (see Tisserand, 1889) linked by the
relations
1—n 2p 1-p
= s e = R = 5
147 1+p 1+

The Fourier coefficients in (1.2) depend on e or ff and admit
an integral representation,

B n (2.3)

1 2n
Zm = —

- 2 0 ¢n,m eXp(—ISE)dE

(2.4)

Due to the fact that v is an odd function of E, if we change
m by —m and s by —s in (1.2), we get directly the symmetry:

=", (2.5)
as in the case of the classical Hansen coefficients X".

Let us introduce the Gaussian hypergeometric series
F(a,b;c;z) (Abramowitz and Stegun, 1972):

F(a,b;c;z) = F(b,a;c;z) = i (a)]‘(b)l‘zk

k=0 (C)k ( 1 )k ’

where the Pochhammer symbol (), is defined for non-neg-
ative integers k by

(@ =1, (1)=&,
(@), =ala+1)...(a+k—-1)=(a+k—1)(a),_,.

(2.6)

(2.7a)
(2.7b)

An important characteristic of the hypergeometric func-
tions is that if a or b is a negative or null integer and
c € N* | the series (2.6) reduces to a finite polynomial.
Apart from this latter case, the radius of convergence of
the hypergeometric series is 1, as this is easily seen using
the d’Alembert’s criterion.

A general and convenient expression for the Z-functions
using the hypergeometric function is given by Brumberg
(1995), (see Egs. (2.3.40) and (2.3.42)). The original expres-
sion in terms of f can be written in the following form

Z"(B) = AT (B)V " (B), (2.8)
where
o 0T 0 iy gy (2.00)

(1>|m7¥|
= F(—n—m+M,,—n+m+M_;1+M_; ), (2.9b)

with M, = max(0,m —s) and M_ = max(0,s — m).

In the rest of this paper, we assume that m —s =
M, = 0 without loss of generality. For m —s < 0, it will
be necessary to change the sign of m by —m and s by —s
in the established relations (Z-indexes are not concerned
by virtue of the symmetry (2.5)).

It follows that we have always M_ = 0, (—n +m),, =1,
and (2.9b) takes the form

A" = %ﬁmé‘(l + 7, (2.10a)
Vi = F(—n—m+M,,—n+m1+M,;B). (2.10b)
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