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Abstract

The presence of small-amplitude oscillations in prominences is well-known from long time ago. These oscillations, whose exciters are
still unknown, seem to be of local nature and are interpreted in terms of magnetohydrodynamic (MHD) waves. During last years, obser-
vational evidence about the damping of these oscillations has grown and several mechanisms able to damp these oscillations have been
the subject of intense theoretical modelling. Among them, the most efficient seem to be radiative cooling and ion-neutral collisions. Radi-
ative cooling is able to damp slow MHD waves efficiently, while ion-neutral collisions, in partially ionised plasmas like those of solar
prominences, can also damp fast MHD waves. In this paper, we plan to summarize our current knowledge about the time and spatial
damping of small-amplitude oscillations in prominences.
� 2009 COSPAR. Published by Elsevier Ltd. All rights reserved.
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1. Introduction

Long time ago, observations performed by ground-based
telescopes showed that quiescent prominences and filaments
display small-amplitude oscillations which are detected,
mainly, through the periodic Doppler shift of spectral lines.
Further evidence has been provided during last years by
ground-based high-resolution observations (Terradas
et al., 2002; Lin, 2004) as well as by on-board SoHO instru-
ments (Blanco et al., 1999; Régnier et al., 2001; Pouget
et al., 2006). High-resolution observations of solar filaments
reveal that they are formed by a myriad of horizontal struc-
tures called threads (Lin et al., 2005) and filament oscilla-
tions seem to be related with those threads (Yi and
Engvold, 1991; Yi et al., 1991). Recent two-dimensional,
high-resolution observations (Lin, 2004) have also shown
the central part of a filament undergoing damped oscilla-
tions while, at the same time, the phase is maintained over
the observed region. More extense theoretical and observa-
tional information about small amplitude oscillations in
prominences and filaments can be found in Engvold
(2001; 2004), Wiehr et al. (2004), Oliver and Ballester

(2002), Ballester (2006), Banerjee et al. (2007), Engvold
(2008), Oliver (2008), Mackay et al. (submitted for publica-
tion). Usually, prominence small-amplitude oscillations are
interpreted in terms of linear and ideal standing or propa-
gating magnetohydrodynamic (MHD) waves. Further-
more, some observations have also pointed out the
damping of oscillations (Molowny-Horas et al., 1999,
Fig. 1; Terradas et al., 2002; Lin, 2004) and the time damp-
ing of these oscillations has been unambiguously deter-
mined from these observations. Reliable values for the
damping time, sD, have been derived, from different Dopp-
ler velocity time series, by Molowny-Horas et al. (1999) and
Terradas et al. (2002), in prominences, and by Lin (2004), in
filaments. The values of sD thus obtained are usually
between 1 and 4 times the corresponding period, and large
regions of the prominence display similar damping times.

The damping of perturbations is probably a common
feature of prominence oscillations, therefore, theoretical
damping mechanisms must be explored, and the time scales
of damping produced by the different mechanisms should
be compared with those obtained from observations. Ten-
tative mechanisms that can provide with an explanation for
the observed damping of prominence oscillations could be:
radiative damping (Terradas et al., 2001; Terradas et al.,
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2005; Carbonell et al., 2006), wave leakage (Dı́az et al.,
2001, 2002), resonant absorption (Ruderman and Roberts,
2002) and ion-neutral collisions (Khodachenko et al., 2004;
Forteza et al., 2007). In this paper, we will concentrate in
the damping due to non-adiabatic waves and ion-neutral
collisions, summarizing our current knowledge.

2. Damping of prominence oscillations

Theoretical studies of small amplitude prominence oscil-
lations make use of the linearised, ideal MHD equations and
wave propagation is investigated by assuming perturbations
to the equilibrium variables of the form expðixtÞ. When a
bounded medium is considered, the problem usually reduces
to solving a set of ordinary differential equations in which the
unknowns are the velocity components. The boundary con-
ditions imposed on the solutions are often the vanishing of
the velocity at the edge of the physical domain. However,
when an unbounded medium is considered we obtain an
algebraic dispersion relation whose roots provide us directly
with the frequency of oscillation of the different waves.

In general, theoretical models are divided into two
groups which reflect widely different choices of prominence
equilibrium configurations: (a) models which consider the
prominence as an isothermal plasma slab of finite width;
(b) models which are concerned with a single prominence
thread assumed to vibrate independently of other threads.
Here, we will only consider bounded prominence slabs,
bounded prominence/corona slabs, or an unbounded med-
ium with prominence conditions.

2.1. Non-adiabatic MHD waves in bounded prominence slabs

In order to explain the damped oscillations described in
Section 1, Terradas et al. (2001) removed the adiabatic
assumption in favour of the so-called Newton’s law of cool-
ing with constant relaxation time, which consists of a simple
way of taking into account the effect of radiation on waves.
In essence, temperature fluctuations are assumed to be radi-
atively damped on a characteristic time scale sR, where the
limits sR ! 1 and sR ¼ 0 correspond to adiabatic and iso-
thermal perturbations, respectively. Following this
approach, Terradas et al. (2001) investigated the influence
of radiative cooling on the fast and slow MHD modes of
the Kippenhahn – Schlüter, 1957 and Menzel (1951) promi-
nence models. They found that, in both equilibria, the fast
mode frequency is not affected by the cooling mechanism,
whereas slow mode frequencies become appreciably smaller
when going from the adiabatic to the isothermal limit
(Fig. 2(a)). Regarding the damping of disturbances, fast
modes are characterised by very large damping times and
so other physical effects should be taken into account to
explain the damping of these modes. As for slow modes, all
of them display strong damping (Fig. 2(b) and (d)) except
for the fundamental mode in the Kippenhahn–Schlüter
model. Finally, the fundamental slow mode in Menzel’s
equilibrium attains very large periods for small vertical

wavenumbers and certain values of the radiative time sR

(Fig. 2(c)), this particular behaviour being caused by the
destabilising action of gravity. Although rather coarse, this
calculation provides with a qualitative explanation, that
has not been previously explored, for the Doppler velocity
damping observed by Molowny-Horas et al. (1999).

A more complete treatment of the problem was used by
Terradas et al. (2005) by considering a bounded slab-like
prominence and a full energy equation including optically
thin radiation, thermal conduction and heating. The basic
MHD equations for the discussion of linear and non-adia-
batic MHD waves are:
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Fig. 1. Observed Doppler velocity (dots) and fitted function (continuous
line) vs. time at two different points in a quiescent prominence. The period

is P ¼ 2p
xr

� �
¼ 70 min in both points and the damping time is

sD ¼ 1
xi

� �
¼ 140 and 101 min, respectively. The function fitted to the

observational data is of the form v0 cosðxt þ /Þ expð�t=sDÞ. Adapted
from Molowny-Horas et al. (1999).
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