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Abstract

The purpose of this work is to compute transfer trajectories from a given Low Earth Orbit (LEO) to a nominal Lissajous quasi-peri-
odic orbit either around the point L1 or the point L2 in the Earth–Moon system. This is achieved by adopting the Circular Restricted
Three-Body Problem (CR3BP) as force model and applying the tools of Dynamical Systems Theory.

It is known that the CR3BP admits five equilibrium points, also called Lagrangian points, and a first integral of motion, the Jacobi
integral. In the neighbourhood of the equilibrium points L1 and L2, there exist periodic and quasi-periodic orbits and hyperbolic invari-
ant manifolds which emanate from them. In this work, we focus on quasi-periodic Lissajous orbits and on the corresponding stable
invariant manifolds.

The transfers under study are established on two manoeuvres: the first one is required to leave the LEO, the second one to get either
into the Lissajous orbit or into its associated stable manifold. We exploit order 25 Lindstedt–Poincaré series expansions to compute
invariant objects, classical manoeuvres and differential correction procedures to build the whole transfer.

If part of the trajectory lays on the stable manifold, it turns out that the transfer’s total cost, Dvtot, and time, ttot, depend mainly on:

1. the altitude of the LEO;

2. the geometry of the arrival orbit;

3. the point of insertion into the stable manifold;

4. the angle between the velocity of insertion on the manifold and the velocity on it.

As example, for LEOs 360 km high and Lissajous orbits of about 6000 km wide, we obtain Dvtot 2 ½3:68; 4:42� km=s and
ttot 2 ½5; 40� days.

As further finding, when the amplitude of the target orbit is large enough, there exist points for which it is more convenient to transfer
from the LEO directly to the Lissajous orbit, that is, without inserting into its stable invariant manifold.
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1. Introduction

Forty years after the first step by a man on the Moon,
we are witnesses of a debate, active more than ever, on a
possible return. Not just NASA, but also India, China

and Japan have designed unmanned missions that are
now orbiting the Moon looking for water, testing new tech-
nology and obtaining a detailed characterization of the
satellite in view of a future human installation. Also, the
space tourism companies are planning to extend their
potentiality by offering trips to the Moon.

In this framework, we apply the model of the Circular
Restricted Three-Body Problem (CR3BP) to the Earth–
Moon system and we look for trajectories going from a

0273-1177/$36.00 � 2009 COSPAR. Published by Elsevier Ltd. All rights reserved.

doi:10.1016/j.asr.2009.12.010

* Corresponding author.
E-mail addresses: elim@maia.ub.es (E.M. Alessi), gerard@maia.ub.es
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nominal orbit around the Earth to a nominal quasi-peri-
odic orbit around the collinear equilibrium point either
L1 or L2. As L1 is located between the two primaries, its
neighbourhood seems to be the most appropriate place to
put a space hub, serving for instance as a construction
and repair facility. On the other hand, L2 would be profit-
able to monitor the lunar farside. The transfers we investi-
gate would be also useful if considering other types of Solar
System explorations, for instance to go to Mars or to a
minor body.

It is well-known that the CR3BP, in a proper reference
system, admits five equilibrium points (Szebehely, 1967)
and that central and hyperbolic invariant manifolds origi-
nate from the neighbourhood of the collinear ones. Among
the orbits filling the central invariant manifold, we focus on
the Lissajous ones, quasi-periodic orbits lying on invariant
tori. This two-parameter family of solutions imposes less
constraints to the mission designer than the widely used
halo orbits, essentially because the in-plane and the out-
of-plane amplitudes can be chosen independently one to
the other. As further advantage, the eclipse avoidance
problem can be solved in a non-expensive way. Also, a
methodology for transfers involving Lissajous orbits can
be extended and applied to the periodic orbit case.

As a matter of fact, in the Earth–Moon system the
hyperbolic manifolds associated with central orbits pass
quite far from our planet. The approach we follow to
achieve the transfer is based on two manoeuvres: one to
depart from the Low Earth Orbit (LEO) and one to insert
either into the Lissajous or into one of the branches of its
stable invariant manifold. We intend to provide a global
picture of the dynamics driving the transfers, with special
emphasis on the role played by the geometry of the arrival
orbits and of the stable manifolds. We will demonstrate
that the distance existing between the LEO and the points
on the manifold is crucial for a cheap connection.

Recently, other authors have considered the same prob-
lem with different methodologies. Parker (2007) and
Rausch (2005) fixed as arrival locations halo orbits around
the point L1 in the Earth–Moon system. The first author
computed a 2-manoeuvres connection by means of a
Two-Body Problem (2BP) approximation refined including
the gravitational effect of the Moon. Rausch used a shoot-
ing technique to construct a continuous arc linking two
given points in a fixed time of flight. Renk and Hechler
(2008) exploited optimization techniques in order to trans-
fer from a nominal LEO to a nominal Libration Point
Orbit (LPO) (halo and Lissajous) either around L1 or L2.
The trajectories computed follow the escape directions
associated with the LPO and may perform a lunar fly-by.
Gordon (2008) focused his work on LEO–LPO around
the point L2. In his approach, a differential correction pro-
cedure is used to meet some constraints at the departure
and at the insertion either into a planar Lyapunov orbit
or into a halo orbit.

In this paper, after a short description of the model, we
explain the semi-analytical and numerical tools employed

for the computation of the invariant objects and for the
LEO-manifold trajectory. After that, we present the results
obtained, trying to point out the differences between our
strategy and the above-mentioned studies.

2. The model

The Circular Restricted Three-Body Problem (Szebeh-
ely, 1967) studies the behavior of a particle P with infinites-
imal mass m3 moving under the gravitational attraction of
two primaries P 1 and P 2, of masses m1 and m2, revolving
around their center of mass in circular orbits.

To remove time from the equations of motion, it is con-
venient to introduce a synodical reference system
fO; x; y; zg, which rotates around the z-axis with a constant
angular velocity x equal to the mean motion n of the
primaries. The origin of the reference frame is set at the
barycenter of the system and the x-axis on the line which
joins the primaries, oriented in the direction of the largest
primary. In this way, we work with m1 and m2 fixed on
the x-axis, as shown in Fig. 1.

The units are chosen in such a way that the distance
between the primaries and the modulus of the angular
velocity of the rotating frame are unitary. This means that,
for the Earth–Moon system, the unit of distance equals
384,400 km, the unit of velocity equals 1.02316 km/s and
the dimensionless mass of the Moon is l ¼ 0:012150582.
With these assumptions, the equations of motion can be
written as
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where r1 ¼ ½ðx� lÞ2 þ y2 þ z2�
1
2 and r2 ¼ ½ðxþ 1� lÞ2þ

y2 þ z2�
1
2 are the distances from P to P 1 and P 2,

respectively.
The system (1) has a first integral, the Jacobi integral,

which is given by

C ¼ x2 þ y2 þ 2ð1� lÞ
r1

þ 2l
r2

þ ð1� lÞl� ð _x2 þ _y2 þ _z2Þ:

ð2Þ

In the synodical reference system, there exist five equilib-
rium (or libration) points (see Fig. 1). Three of them, the
collinear ones, are in the line joining the primaries and
are usually denoted by L1, L2 and L3. If xLi ði ¼ 1; 2; 3Þ de-
notes the abscissa of the three collinear points, we assume
that

xL2
< l� 1 < xL1

< l < xL3
:

The collinear libration points behave as the product of
two centers by a saddle. When we consider all the energy
levels, the center � center part gives rise to four-dimen-
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