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E.T.S.I. Aeronáuticos (Universidad Politécnica de Madrid), Plaza de Cardenal Cisneros, 3, 28040 Madrid, Spain

Received 31 October 2006; received in revised form 13 May 2007; accepted 18 June 2007

Abstract

A cylindrical liquid bridge supported between two circular-shaped disks in isorotation is considered. The effect of an offset between
the rotation axis and the axis of the two supporting disks (eccentricity) on the stability of the static liquid bridge is investigated. A numer-
ical method is used to find stable and unstable shapes and to determine the stability limit for different values of eccentricity. The calcu-
lated stability limits are compared with analytical results, recovering the same behavior. Numerical results have been also compared with
the results of an experiment aboard TEXUS-23, recovering the stability limit and the equilibrium shapes.
� 2007 COSPAR. Published by Elsevier Ltd. All rights reserved.
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1. Introduction

The behavior of liquid bridges has been widely studied,
both theoretically and experimentally, due to the use of this
configuration in a crystal growth technique known as the
floating zone technique (Meseguer and Sanz, 1985). In this
technique, rotation of the supports is used to achieve a uni-
form temperature field.

In this paper a cylindrical liquid bridge supported
between two circular-shaped disks in isorotation is consid-
ered. In the absence of gravity, two types of instability,
namely, C-mode and amphora mode, depending on the
slenderness, can appear (Vega and Perales, 1983; Perales
et al., 1990). The effect of an offset between the rotation
axis and the axis of the two supporting disks (eccentricity)
on these stabilities is investigated.

The stability limits and the equilibrium shapes of the
configuration are calculated using an extension of an
already implemented numerical method (Laverón-Simavil-
la and Perales, 1995; Laverón-Simavilla and Checa, 1997).

The calculated stability limits are compared with the
analytical results of Perales et al. (1990) (only valid for

small eccentricity). The numerical method is used to find
stable and unstable shapes and to determine the stability
limit for different values of eccentricity, not only restricted
to small eccentricity.

For the C-mode, numerical results have been also com-
pared with the results of an experiment aboard TEXUS-23
(see Sanz et al. (1992)) recovering the stability limit and the
equilibrium shapes.

2. Problem formulation

The fluid configuration consists of a liquid bridge as
sketched in Fig. 1: the liquid column is held by surface ten-
sion forces between two disks of radius R0, placed a dis-
tance L apart. Both disks are parallel and coaxial. The
volume of the bridge is that corresponding to a cylindrical
one: V ¼ pR2

0L. The liquid and the disks are solidly rotating
at an angular speed X around an axis which is parallel to
the axis of the disks, and is placed a small distance E
(eccentricity) apart from this line.

The equation governing the steady shape of the liquid
bridge is obtained by expressing the equilibrium between
the different forces at the interface
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r ~MðRÞ þ ~P þ 1

2
qX2D2 ¼ 0 ð1Þ

where R = R(Z,h) is equation of the gas–liquid interface, r
is the surface tension, ~MðRÞ is twice the mean curvature of
the interface, ~P is the pressure difference at the origin, q is
the liquid density, X is the angular speed and D is the dis-
tance between a point of the free surface and the rotation
axis (see Fig. 1) which, in terms of the shape of the surface
and the azimuthal angle h, can be calculated as:

D ¼ ðR2 þ 2ER cos hþ E2Þ1=2 ð2Þ

Eq. (1) has to be integrated with the boundary conditions

Rð�L=2; hÞ ¼ R0 ð3Þ
RðZ; hÞ ¼ RðZ; hþ 2pÞ ð4Þ
1

2

Z L=2

�L=2

dZ
Z 2p

0

R2ðZ; hÞdh ¼ pLR2
0 ð5Þ

Eq. (3) indicates that the liquid column remains anchored
to the disk edges, Eq. (4) comes from the azimuthal period-
icity and Eq. (5) expresses the conservation of the volume
of the liquid bridge.

Let us introduce the following dimensionless variables
and parameters:

K ¼ L=2R0; e ¼ E=R0; W ¼ qX2R3
0=r;

P ¼ ~PR0=r; z ¼ Z=R0; F ðz; hÞ ¼ Rðz; hÞ=R0 ð6Þ

where K is the liquid bridge slenderness, e is the dimension-
less eccentricity, W is the Weber number and P is the
dimensionless reference pressure.

The formulation of the problem becomes

MðF Þ þ P þ 1

2
W ðF 2 þ 2eF cos hþ e2Þ ¼ 0 ð7Þ

with

MðF Þ¼ F ð1þF 2
z ÞðF hh�F ÞþFF zzðF 2þF 2

hÞ�2F hðF hþFF zF hhÞ
ðF 2ð1þF 2

z ÞþF 2
hÞ

3=2

ð8Þ

The dimensionless boundary conditions for Eq. (7) are

F ð�K; hÞ ¼ 1 ð9Þ
F ðz; hÞ ¼ F ðz; hþ 2pÞ ð10ÞZ K

�K
dz
Z 2p

0

F 2ðz; hÞdh ¼ 4pK ð11Þ

3. Numerical method

An algorithm, based on a continuation method (Keller,
1987) capable of overpassing bifurcation points and turn-
ing points (which appear for the amphora mode and the
C-mode, respectively) was developed using a finite differ-
ence method (Laverón-Simavilla and Perales, 1995) and
was used to obtain the bifurcation diagrams and equilib-
rium shapes of liquid bridges subjected to lateral accelera-
tion and other effects. The stable or unstable character of
each of the shapes is calculated to determine the position
of the stability limit.

In this paper the system of Eqs. (7)–(11) is solved by
using an extension of that algorithm to liquid bridges rotat-
ing around an eccentric axis to study the effect of combined
eccentricity and angular speed.

The method is based on linearizing Eqs. (7)–(11) around
a known solution (F0(z,h), P0) by seeking solutions of the
form

F ðz; hÞ ¼ F 0ðz; hÞ þ f ðz; hÞ þ oðjf jÞ
P ¼ P 0 þ p þ oðjpjÞ

where |f/F0|� 1 and |p/P0|� 1, and the character ‘o’
means that the terms not considered are very small com-
pared to the smallest one retained. The leading terms
obtained from Eq. (7) result in an equation for f(z,h)

~O�3=2 ~Aþ ~B� 3~A~Q

2~O

� �
f þ ~C � 3~A~S

2~O

� �
fz þ ~D� 3~A~T

2~O

� �
fh

� �

þ ~Efzz þ ~Gfhh þ ~Hfzh þ P 0 þ p þ 1

2
W e2 þ F 2

0 þ 2F 0f
� �

þ eW F 0 þ fð Þ cos hþ 1

2
We2 ¼ 0 ð12Þ

where ~A; ~B; ~C; ~D; ~E; ~G; ~H ; ~O; ~Q; ~S and ~T are known func-
tions of F0(z,h) and P0 and consequently of the considered
point on the interface. The leading terms obtained for the
boundary conditions are

f ðz; hÞ ¼ f ðz; hþ 2pÞ ð13Þ
F 0ð�K; hÞ þ f ð�K; hÞ ¼ 0 ð14ÞZ K

�K
dz
Z 2p

0

F 0ðz; hÞ2 dhþ 2

Z K

�K
dz

Z 2p

0

½F 0ðz; hÞf ðz; hÞ�dh ¼ 4pK ð15Þ

Fig. 1. Geometry and coordinate system for the liquid bridge problem.
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