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Abstract

An evolutionary optimisation technique is presented to solve a problem for turbulent space plasma system modelling, using multi-
satellite magnetic field measurements of the plasma turbulence.

The application of evolutionary algorithms for system identification allows model structure selection and fitting of parameters for the
chosen model using measured inputs and outputs of the system, which can then be used to determine physical characteristics of the system.
Genetic algorithms are one such technique that has been implemented. Experimental studies have been performed using multi-point satellite
observations providing input and output measurements of the turbulent plasma system. Linear and nonlinear models of the turbulent plas-
ma system are identified and results using genetic algorithms are compared to results obtained from the least squares estimation method.
� 2006 COSPAR. Published by Elsevier Ltd. All rights reserved.
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1. Introduction

One of the motivations for studying space plasma turbu-
lence in the magnetosheath is the contribution this area of
research can make in the understanding of the relationship
between the solar wind and Earth’s own magnetosphere
and so consequently its effect on Earth. Solar activity can
disrupt power grids, short wave radio, television and tele-
graph signals, navigational equipment, defence early warn-
ing radar systems, the climate, and can even knockout
communication satellites in space in ways that are only
now just beginning to be understood.

Attempts to identify processes in space plasma turbu-
lence contained in the magnetosheath have been made
using satellite-based time-series measurements of magnetic
field waves at and around the region of the bow shock.
Analysis of these measurements in the frequency domain
has made it possible to construct linear and nonlinear

models of the turbulence in this region, which in turn has
allowed the investigation of linear and nonlinear processes
in the turbulence. Although wave–particle interaction is a
linear process, affecting both the wave growth rate and dis-
persion, through the resulting energy imbalance this pro-
cess is often responsible for the occurrence of nonlinear
processes such as wave–wave interactions that affect cou-
pling between waves within the turbulence.

The aim of this paper is to apply a new technique in the
estimation of the linear and nonlinear models of the turbu-
lence, based on genetic algorithms, and assess its perfor-
mance by comparing the results with those obtained
using an existing technique. All the space plasma turbu-
lence measurements used in this paper are taken from those
made by the AMPTE UKS and IRM satellites as they
crossed the bow shock and passed into the magnetosheath
on October 20, 1984.

2. Turbulent space plasma modelling

Amongst many things that need to be known to under-
stand plasma turbulence is a description of the composition
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of the plasma, i.e. which wave modes are observed in the
plasma. Knowledge of the processes that occur in the plas-
ma turbulence, i.e. energy transfer, is needed as well. Ener-
gy transfer between plasma particles and waves is a linear
process that does not involve energy exchange between
spectral components. Energy transfer between waves how-
ever is a nonlinear process. The Decay Instability, involv-
ing three waves, and the Modulational Instability,
involving four waves, are two examples of nonlinear
processes.

A method to reveal this information exists in the frame-
work of System Identification. A model is constructed from
a priori knowledge of the system and then measurements of
the plasma system are used to estimate the system param-
eters. The choice of a suitable model is important so that
these estimated parameters can be interpreted in an appro-
priate physical sense.

2.1. Model structure

A large class of systems can be modelled as Single Input
Single Output (SISO). Without loss of generality these sys-
tems can be described, in the time domain, by an equation
of the form,

yðtÞ ¼FðuðtÞÞ ð1Þ
where the output of the system y(t) is related to the inputs
u(t) to the system through an arbitrary operator F.

Linear systems can be expressed as,

yðtÞ ¼
Z 1

0

h1ðtÞuðt � sÞds ð2Þ

where h1 (t), the Impulse Response Function, represents
fully and completely the dynamics of the linear system.
Eq. (2) has a frequency (Fourier) Domain representation,

Y ðf Þ ¼ H 1ðf ÞUðf Þ ð3Þ
where Y (f), U (f) are the Fourier transforms of the output
and input variables, respectively. H1 (f) is the Fourier trans-
form of the Impulse Response Function, called the Linear
Frequency Response Function, and fully represents the
dynamics of the linear system in the Frequency domain.
Eqs. (2) and (3) are equivalent.

Nonlinear systems can be considered by continuing the
expansion of Eq. (2) to include higher order terms,

yðtÞ ¼
Z 1

0

h1ðsÞuðt � sÞds

þ
Z Z 1

0

h2ðs1; s2Þuðt � s1Þuðt � s2Þds1ds2

þ
Z Z Z 1

0

h3ðs1; s2; s3Þuðt � s1Þuðt � s2Þ

� uðt � s3Þds1ds2ds3 þ � � � ð4Þ

where hi (s1, . . . ,si) are the ith (higher) order generalisa-
tions of the Impulse Response Function. This equation
has a frequency domain form (Rugh, 1981),

Y ðf Þ ¼ H 1ðf ÞUðf Þ

þ
Z 1

0

H 2ðf1; f2ÞUðf1ÞUðf2Þdðf1 þ f2 � f Þdf1df2

þ
Z Z 1

0

H 3ðf1; f2; f3ÞUðf1ÞUðf2ÞUðf3Þ

� dðf1 þ f2 þ f3 � f Þdf1df2df3 þ � � � ð5Þ

where Hi (f1, . . . , fi) are known as the Generalised Frequen-
cy Response Functions (GFRFs) of the system. The delta
functions are included to indicate that only frequencies that
satisfy

Pi
j¼1fj ¼ f contribute to the output, where f is the

output frequency and f1, . . . , fi are the input frequencies.
If all the Generalised Frequency Response Functions are
known then the nonlinear system is fully determined. As
in the linear case, Eqs. (4) and (5) are equivalent.

A similar Fourier expansion occurs naturally when con-
sidering the Hamiltonian formulation of weak plasma tur-
bulence (Zakharov et al., 1985). In this approach system
kernels Ci (f1, . . . , fi) appear, in a similar way that GFRFs
appear in Eq. (5), and analytic expressions for the former
can be derived. It is the similarity with the Hamiltonian
formulation that makes the frequency domain model pre-
sented here a natural choice for modelling plasma
turbulence.

2.2. Model parameters

Eq. (5) shows the first, second and third order terms of
the system expansion in the frequency domain. There are
theoretically an infinite number of terms which practically
are impossible to compute so a shortened model is needed.
It is not immediately clear which terms in Eq. (5) are signif-
icant and in general it is not valid to arbitrarily drop terms.
For the case examined here, that of weak plasma turbu-
lence, the assumption is made that nonlinear interactions
involving four or more waves are less significant than those
involving three or less waves, so the former terms can be
dropped and the latter retained.

It should be noted this is not always a safe assumption
to make as the relative strength of the nonlinear terms
may depend significantly on the local plasma conditions.
This is a first assumption with the practical benefit of sim-
plifying the model to one more easily solvable from a com-
putational perspective, at the expense of restricting the
model to one allowing interactions involving a maximum
of only three waves, perhaps missing some of the physics.
Increasing the number of terms in the model is not forbid-
den by this argument, and is worthy of future study.

The integration in Eq. (5) is over an infinite range of fre-
quencies. Practically however sampling a signal for a finite
duration inherently imposes limits on the frequency band-
width and resolution of the sampled signal. For a signal of
length T seconds sampled at a rate fs Hz (with ns = Tfs

samples), the limit on the lowest frequency is determined
by the length of the signal, fmin = 1/T. This is also the
Fourier frequency resolution of the signal df. The highest
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