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Abstract

An analytical method is proposed to study the attitude stability of a triaxial spacecraft moving in a circular Keplerian orbit in the
geomagnetic field. The method is developed based on the electrodynamics effect of the influence of the Lorentz force acting on the
charged spacecraft’s surface. We assume that the rigid spacecraft is equipped with an electrostatic charged protective shield, having
an intrinsic magnetic moment. The main elements of this shield are an electrostatic charged cylindrical screen surrounding the protected
volume of the spacecraft. The rotational motion of the spacecraft about its centre of mass due to torques from gravitational force, as well
Lorentz and magnetic forces is investigated. The equilibrium positions of the spacecraft in the orbital coordinate system are obtained.
The necessary and sufficient conditions for the stability of the spacecraft’s equilibrium positions are constructed using Lyapunov’s direct
method. The numerical results have shown that the Lorentz force has a significant influence on the stability of the equilibrium positions,
which can affect the attitude stabilization of the spacecraft.
� 2007 COSPAR. Published by Elsevier Ltd. All rights reserved.
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1. Introduction

It is very important to control the interactions of the
spacecraft with one or more of various ambient fields,
which produce a different disturbance torque. So, the dis-
turbance torque becomes a control torque for the space-
craft. One application of this method is to generate a
controlled magnetic moment in a spacecraft, which inter-
acts with the Earth’s magnetic field in order to control
the spacecraft orientation, or to perform some similar con-
trol function.

The geomagnetic field had considerable effect on the
spacecraft potential due to magnetic field confinement of
the electrons as well as to the electric field resulting from
the movement of the spacecraft across magnetic field lines.

Anderson et al. (1994) examined the relationship
between the plasma environment and spacecraft potential

for the Dynamics Explorer 2 (DE 2) spacecraft in an
attempt to improve the accuracy of ion drift measurements
by the retarding potential analyser (RPA). They derived an
algorithm for determining the spacecraft potential (at the
location of the RPA on the spacecraft) for any point of
the DE 2 orbit.

The important quantity, which determines the magni-
tude of the effect, is the satellite’s electrical charge. The sur-
face of a satellite is charged to a negative potential (Al’pert
et al., 1964) and in the first approximation behaves like a
spherical condenser with respect to the ionosphere vicinity.

Several methods were developed to study the attitude
control of the magnetic fields (Jan and Tsai, 2005; Silani
and Lovera, 2005).

Chen and Liu (2002) and Chen et al. (2002) investigated
the chaotic motion of a magnetic rigid spacecraft and its
control with internal damping in a circular orbit near the
equatorial plane of the Earth.

A series of papers were already made to assess the effects
of Lorentz force on the orbital motion (Sehnal, 1969; Ciuf-
olini, 1987; VokRouhlicky, 1989; Antal and Mihály, 1997;
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Peck Mason, 2005; Abdel-Aziz, in press). On the other
hand there is some publications studied the Lorentz force
influence on the dynamic of the rotational motion of the
satellite (Beletskii and Khentov, 1985; Tikhonov, 1990).
Lanoixo et al. (2005) have been shown that the Lorentz
forces can be effectively used to decay the orbit of a satel-
lite. For the particular control system described in their
paper, Lorentz forces are more effective for orbital decay
than chemical rocket propulsion when the satellite mass
is larger than approximately 100 kg.

Yehia (2001) have been recently shown that the motion
involving electrically charged and magnetized rigid bodies
under certain combinations of gravitational, electric and
Lorentz electromagnetic forces are integrable problem.

In the present work a rigid spacecraft, which equipped
with electrostatic charged protective shield is considered,
the main element of this shield is an electrostatic charged
cylindrical screen surrounding the protected volume of
the spacecraft. The rotational motion of the spacecraft
about its centre of mass due to torque from gravitational
force, as well as Lorentz and magnetic forces is
investigated.

Possible equilibrium positions of the spacecraft in the
orbital coordinate system are obtained. The necessary
and sufficient conditions for the stability of the spacecraft’s
equilibrium positions are constructed using Lyapunov’s
direct method.

2. The equations of motion

A rigid spacecraft is considered whose centre of mass
moves in the Newtonian central gravitational field of the
earth in a circular orbit of radius R. We suppose that the
spacecraft is equipped with an electrostatic charged protec-
tive shield, having an intrinsic magnetic moment. The main
element of this shield is an electrostatic charged cylindrical
screen surrounding the protected volume of the spacecraft.
The rotational motion of the spacecraft about its centre of
mass is analysed, considering the influence of gravity gradi-
ent torque TG and the torques TL and TM due to Lorentz
and magnetic forces, respectively. The torque TL results
from the interaction of the geomagnetic field with the
charged screen of the electrostatic shield.

Let OX 0Y 0Z 0 and OX0Y0Z0 be two coordinate systems
with a common origin O at the spacecraft’s centre of mass.
OX 0Y 0Z 0 is the orbital coordinate system with OX 0 tangent
to the orbit in the direction of motion, OZ 0 lies along the
normal to the orbital plane, and OY 0 lies along the radius
vector R of the point O relative to the centre of the Earth.
OX0Y0 Z0 is the system of principal central axes of inertia
of the spacecraft. Let h, w and / be the Eulerian angles
such that the angle of precession w is taken in plane orthog-
onal to Z0, h is the notation angle between Z 0, Z0 and / is
the angle of self-rotation around the Z 0-axis. Let A, B, C

are the principal moments of inertia of the spacecraft.
Let a uniform magnetic field H = H(b1,b2,b3) be direc-

ted along the normal of the orbit, where H is the magnitude

of the intensity of the magnetic field, with the total mag-
netic moment M = M(0, 0,1) directed along the Z 0-axis,
where M is the magnitude of the magnetic moment.

The components of the Lorentz force, will be the com-
ponents of a vector (Sehnal, 1969; Peck Mason, 2005)

FL ¼ QV �H ; ð1Þ

where V is the velocity vector of the satellite in the orbit, Q

is the satellite’s electrical charge.
The spacecraft is supposed to be equipped with a

charged surface. According to Beletskii and Khentov
(1985), the matrix S of the electrostatic charged cylindrical
screen takes the form:

S ¼
Db2 0 0

0 Db2 0

0 0 Da2

0
B@

1
CA; ð2Þ

where D ¼ QH
4R3, 2a and 2b are the length and diameter of the

cylindrical shell.
In the orbital system, the torque TL due to the Lorentz

force, which can affect the spacecraft attitude, takes the fol-
lowing expression (Beletskii and Khentov, 1985):

TL ¼ x� bS þ xg � bS; ð3Þ

where, x is the angular velocity vector of the spacecraft,
xg = xgb is the vector of angular velocity of the diurnal
rotation of the geomagnetic field together with the Earth.

The equations of motion of a rigid spacecraft are usually
written in the Euler–Poisson variables x, a, b, c and have
the following form (Wertz, 1978):

_xI ¼ �x� xIþ TG þ TM þ TL; ð4Þ
_aþ a� x ¼ �Xc; _bþ b� x ¼ 0; _cþ c� x ¼ Xa; ð5Þ

where

TG ¼ 3X2c� cI ; TM ¼M �H ; ð6Þ

I = diag (A, B,C) is the inertia matrix of the spacecraft, X is
the orbital angular velocity. a, c, b, are the unit vectors
along the axes of the orbital coordinate system. These vec-
tors are the different directions of the tangent to plane of
the orbit, its radius and the normal of the orbit, respec-
tively (Yehia, 2001),

a ¼ ða1; a2; a3Þ
¼ ðcos w cos /� sin w sin / cos h; � cos w sin /

� cos h sin w cos /; sin h sin wÞ;
b ¼ ðb1; b2;b3Þ
¼ ðsin w cos uþ cos h cos w sin /; � sin w sin / ð7Þ
þ cos h cos w cos /; � sin h cos wÞ;

c ¼ ðc1; c2; c3Þ
¼ ðsin h sin /; sin h cos /; cos hÞ:

The angular velocity of the spacecraft can be written as

x ¼ ðp; q; rÞ ¼ _wcþ _hnþ _/d; ð8Þ
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