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Abstract

A gravitational capture occurs when a spacecraft (or any particle with negligible mass) changes from a hyperbolic orbit with a small
positive energy around a celestial body into an elliptic orbit with a small negative energy without the use of any propulsive system. The
force responsible for this modification in the orbit of the spacecraft is the gravitational force of the third and the fourth bodies involved in
the dynamics. In this way, those forces are used as a zero cost control, equivalent to a continuous thrust applied in the spacecraft. One of
the most important applications of this property is the construction of trajectories to the Moon to minimize fuel consumption. The con-
cept of gravitational capture is used, together with the basic ideas of the gravity-assisted maneuver and the bi-elliptic transfer orbit, to
generate a trajectory that requires fuel consumption smaller than the one required by the Hohmann transfer. The objective of the present
paper is to study the time required for the ballistic gravitational capture in a dynamical model that has the presence of four bodies. In
particular, the Earth–Moon–Sun–Spacecraft system is considered.
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1. Introduction

The application of the gravitational capture phenome-
non in spacecraft trajectories is a very important technique
in astrodynamics. Among the first studies are the ones per-
formed by Belbruno (1987, 1990, 1992a,b, 2002), Krish
et al. (1992), Miller and Belbruno (1991), Belbruno and
Miller (1990a,b, 1993). They all studied missions in the
Earth–Moon system that use this technique to save fuel
during the insertion of the spacecraft in its final orbit
around the Moon. Another group of researches that made
fundamental contributions in this field, also with the main
objective of constructing real trajectories in the Earth–
Moon system, is the Japanese group that includes the pub-
lications Yamakawa et al. (1992, 1993). In particular,

Yamakawa wrote his Ph.D. dissertation (Yamakawa,
1992) on this topic, with several important contributions
in this field. Krish (1991) and Krish et al. (1992) also con-
sidered those transfers to the Moon. A real application of
those ideas was made during an extended phase of a Japa-
nese spacecraft (Belbruno and Miller, 1990a,b). A study of
this problem, from the perspective of invariant manifolds
and using a four-body model, was developed by Belbruno
(1994). After that, some studies that consider the time
required for this transfer appeared in the literature. Exam-
ples of this approach, using the dynamical model of the
restricted three-body problem, can be found in the papers
by Vieira Neto and Prado (1995, 1998). An extension of
the dynamical model to consider the effects of the eccentric-
ity of the primaries is also available in the literature, like in
Vieira Neto and Prado (1996). Routes to the Moon were
also analyzed by Bello-Mora et al. (2000) and Circi and
Teofilatto (2001). Recently, a new excellent book was pub-
lished dedicated to the gravitational capture phenomenon
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by Belbruno (2004). Analytical approximations can be
found in Prado (2002), as well as in Prado (2006), that con-
sidered the problem of gravitational capture under the
restricted four-body problem in terms of the used in Leiva
and Briozzo (2005), to search for fast periodic transfer
orbits in the Sun–Earth–Moon system. The orbits found
in this paper perform periodic Earth–Moon transfers with
a period of approximately 29.5 days. The same goal of find-
ing low cost trajectories to the Moon is used by De Melo
and Winter (2006), where a region of direct stable orbits
around the Moon is investigated, and whose stability is
related to the H2 family of periodic orbits and to the
quasi-periodic orbits that oscillate around them. The use
of invariant manifolds to perform ballistic gravitational
capture is another important technique, like appears in
Koon et al. (2001), where trajectories to the Moon are ana-
lyzed in a system where the primary bodies are the Sun, the
Earth and the Moon.

The bi-circular problem (Simo et al., 1995; Castella and
Jorba, 2000) is a particular case of the problem of four
bodies, where one of the masses, let us say m4, is supposed
to be infinitely smaller than the other three masses. With
that hypothesis, m4 moves under the gravitational forces
of m1, m2 and m3, but it doesnot disturb the motion of
the three bodies with significant mass. In the bi-circular
problem, the motion of m1, m2 and m3 around the center
of mass is considered as formed by circular orbits and
the motion of m4 has to be a certain function of the initial
conditions. We can consider the bi-circular problem as a
disturbance of the restricted problem of three bodies, with
the presence of one more body in circular orbit. This prob-
lem can be used as a model for the motion of a space vehi-
cle in the Sun–Earth–Moon system.

In the first part of the present paper we supplied the
equations of motion of the model and we defined gravita-
tional capture. The second part is used for the calculation
of some numerical results for the bi-circular problem, such
as direct orbits, retrograde orbits, capture orbits, etc.

2. Mathematical models

The problem of four bodies with the two hypotheses
shown below is called ‘‘bi-circular problem’’ and it is
shown in Fig. 1.

First hypothesis. It is considered the existence of two
bodies with significant mass moving in circular orbits
around the mutual center of mass. Those two bodies are
called primaries.

Second hypothesis. The third body, with significant
mass, is in a circular orbit around the center of mass of
the system formed by the two first primaries and its orbit
is coplanar with the orbits of those primaries.

The goal is to study the motion of a fourth body, with
negligible mass, under the gravitational attractions of the
three bodies with significant mass. See Fig. 1 for details.

The planar equations of motion of the space vehicle in
the sidereal and synodical systems are shown below. We

use the canonical system of units, by dividing all the dis-
tances by the distance between the two primaries and divid-
ing all the masses by the total mass of the two primaries. It
is also defined that the angular velocity of the primaries is
unitary. The masses and distances of the Earth, Moon and
Sun are: Mass of the Earth, ME = 5.98 · 1024 kg; Mass of
the Moon, MM = 7.35 · 1022 kg; Mass of the Sun, MS =
1.99 · 1030 kg. Earth–Moon distance d1 = 3.844 · 105 km;
Earth–Sun distance d2 = 1.496 · 108 km.

Then, the masses of the Earth, Moon and Sun in the
canonical system are:

Mass of the Earth ¼ lE ¼
ME

MM þME

¼ 0:9878715

Mass of the Moon ¼ lM ¼
MM

ME þMM

¼ 0:0121506683

Mass of the Sun ¼ lS ¼
MS

ME þMM

¼ 328900:48:

The circumferences described by the Moon and the Earth
has radius lE and lM, respectively. (x,y), (xE,yE), (xM,yM)
and (xS,yS) are the sidereal coordinates of the space vehi-
cle, the Earth, the Moon and the Sun, respectively. Below
are the equations of motion of the Earth, Moon and
Sun: xE = �lM cos(t), yE = �lM sin(t), xM = lE cos(t),
yM = lE sin(t), xS = RS cos(w), yS = RS sin(w) and
w = w0 + xSt,

where Rs = 389.1723985 is the distance between the Sun
and the center of the system, xs = 0.07480133 is the angu-
lar velocity of the Sun, w is the angle that the Sun makes
with the horizontal axis, w0 is the initial value of w and t

is the time.
The distance of the space vehicle to the Earth is

r1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx� xEÞ2 þ ðy� yEÞ

2
q

; to the Moon is

r2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx� xMÞ2 þ ðy� yMÞ

2
q

; to the Sun is

r3 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx� xSÞ2 þ ðy� ySÞ

2
q

.

Therefore, we have the equations of motion of the space
vehicle in the inertial system:

Fig. 1. Restricted four-body model (Cartesian Coordinate).

A.L. Machuy et al. / Advances in Space Research 40 (2007) 118–124 119



Download	English	Version:

https://daneshyari.com/en/article/1767279

Download	Persian	Version:

https://daneshyari.com/article/1767279

Daneshyari.com

https://daneshyari.com/en/article/1767279
https://daneshyari.com/article/1767279
https://daneshyari.com/

