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Abstract

I show how general relativistic 3D radiation hydrodynamic equations can be derived from the tensor formulation. Radiation
quantities are differentiated with respect to the fixed coordinates while the interaction between matter and radiation is described by
the comoving frame quantities. The formulation is covariant, and can be applied to any coordinates or spacetime; I show the derivation
for the Schwarzschild spacetime as an example.
� 2006 COSPAR. Published by Elsevier Ltd. All rights reserved.
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1. Introduction

High-energy astrophysical systems like X-ray binaries
often involve relativistically moving matter and intense
radiation field under strong gravity. Such environment
demands relativistic treatment of radiation hydrodynamics.
Observers moving with relativisitic velocity see photons
blue- or redshifted and beamed. Time runs at a different
rate for moving observers. Scattering by converging or
diverging flow induces bulk Comptonization. When gravity
is strong in addition, photons experience gravitational red-
shift, time ticks differently for observers located at different
positions, and the trajectories of photons are bent due to
the spacetime curvature, sometimes resulting in a loss-cone
effect. All these and other relativistic effects are rather cum-
bersome to implement one by one into the non-relativistic
radiation hydrodynamics. It is much more desirable to
build the whole radiation hydrodynamics upon the fully
relativistic framework so that all relativistic effects are
taken into account naturally.

Thomas (1930) was the first to formulate the special
relativistic theory to describe the radiative viscosity in
differentially moving media. Lindquist (1966) further
derived the covariant moment equations under curved

spacetime, but only for a spherically symmetric case.
Thorne (1981) used a projected symmetric trace-free tensor
formalism to derive the radiation moment equations up to
arbitrary order. Thorne’s formalism was constructed in the
comoving frame. Park (1993), on the other hand, derived
mixed-frame radiation hydrodynamic equations under
spherical symmetry, in which the interaction of matter
and radiation is described by comoving physical quantities
while the temporal and spatial derivatives are expressed in
the fixed coordinates. This mixed-frame approach makes
the equations easier to understand and apply to various
problems.

In this talk, I will extend the mixed-frame approach to
three-dimensional radiation hydrodynamics in a fully
relativisic manner. I will explicitly show how the hydrody-
namic and radiation moment equations are derived from
covariant energy and momentum conservation for a given
spacetime metric, e.g., Schwarzschild metric.

2. Tensor equations

The appropriate physical quantities to describe matter
and radiation in covariant manner are the energy-momen-
tum tensor for matter and the radiation stress tensor for
radiation, respectively. The energy-momentum tensor of
matter that can be approximated by the ideal gas is
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T ab � xgU aUb þ P ggab; ð1Þ
where Ua is the four velocity of the gas and xg ” eg + Pg the
gas enthalpy per unit proper volume which is the sum of
the gas energy density eg and the gas pressure Pg. The radi-
ation stress tensor is

Rab ¼
Z Z

Iðn; mÞnanb dmdX; ð2Þ

where I (xa; n, m) is the specific intensity of photons moving in
direction n on the unit sphere of the projected tangent space
with the frequency m measured by the fiducial observer, with
na ” pa/hm and pa being the four-momentum of photons.
Since the combined quantities m�3 Im and mdmdX are frame-in-
dependent scalars, Rab is a contravariant tensor.

The continuity equation in relativistic hydrodynamics
becomes the particle number density conservation

ðnU aÞ;a ¼ 0 ð3Þ
rather than the mass density conservation because the mass
density in relativity includes the internal energy, and is not
conserved in general.

In the absence of any external force other than radiative
interactions, the total energy and momentum of gas plus
radiation is conserved,

ðT ab þ RabÞ;b ¼ 0: ð4Þ

When the micro-physical processes for the interaction
between radiation and matter are known, Eq. (4) can be
put into two separate equations:

T ab
;b ¼ Ga ð5Þ

for gas and

Rab
;b ¼ �Ga ð6Þ

for radiation, where Ga is the radiation four-force density
that represents the energy and momentum transferred from
radiation to gas. It is defined as

Ga � 1

c

Z
dm
Z

dX½vIðn; mÞ � g�na; ð7Þ

where v is the opacity per unit proper length and g the
emissivity per unit proper volume (Mihalas and Mihalas,
1984). The combinations g/m2 and mv are again frame-inde-
pendent scalars.

3. Schwarzschild spacetime

Although the current formalism can be applied to any
spacetime or coordinates, in this talk I choose the Schwarzs-
child spacetime to explicitly show how the relevant equations
are derived. I use the familiar form of the Schwarzschild
metric, ds2 = C2 dt2 � C�2 dr2 � r2 (dh2 + sin2hd/2), where
M is the mass of the central object, m ” GM/c2, and
C ” (1 � 2m/r)1/2 the lapse function. The four-velocity of
the gas Ua ” dxa/ds satisfies the normalization condition
UaUa = �1, from which the energy parameter
y ” �Ut = [C2 + (Ur)2 + C2(rUh)2 + C2(r sinhU/)2]1/2 is
defined.

Physical quantities that can be defined in flat spacetime
can be defined similarly in the tetrad frame because it is a
locally inertial frame. Fixed and comoving tetrads are gen-
erally the most relevant tetrads in radiation hydrodynam-
ics. The fixed tetrad is an orthonormal tetrad fixed with
respect to the coordinates and has a base

o

ôt
¼ 1

C
o

ot
;

o

or̂
¼ C

o

or
;

o

oĥ
¼ 1

r
o

oh
;

o

o/̂
¼ 1

r sin h
o

o/
:

ð8Þ
Physical quantities defined in the fixed tetrad are those

measured by a fiducial observer who is fixed with respect
to the coordinates. This observer sees matter moving with
the proper velocity v with components vr = y�1Ur,
vh = y�1CrUh, v/ = y�1Cr sinhU/. Since v is a three vector
defined in the tetrad, vi = vi. I also define the Lorentz factor
c ” (1 � v2)�1/2 = y C�1, where v2 ¼ v � v ¼ vivi

¼ v2
r þ v2

h þ v2
/. The value of v2 at the horizon is always 1

regardless of Ui: a fiducial observer fixed at the
horizon always sees matter radially falling in with
velocity c.

The comoving tetrad moves with the velocity vi relative
to the fixed tetrad and therefore is related to the fixed tet-
rad by the Lorentz tranformation

o

oxâ
co

¼ Kb̂
âðvÞ

o

oxb̂
; ð9Þ

where â and b̂ denote each tetrad base. The comoving tet-
rad, then, can be expressed in terms of coordinate base as

o

ôtco

¼ c
C

o

ot
þ cCvr

o

or
þ cvh

1

r
o

oh
þ cv/

1

r sin h
o

o/
; ð10Þ

o

or̂co

¼ c
C

vr
o

ot
þ C 1þ ðc� 1Þ v

2
r

v2

� �
o

or
þ ðc� 1Þ vrvh

v2

1

r
o

oh

þ ðc� 1Þ vrv/

v2

1

r sin h
o

o/
; ð11Þ

and similarly for o=oĥco and o=o/̂co. Applying the inverse
Lorentz transformation Kâ

b̂
ð�vÞ yields the transformation

from the comoving tetrad to the coordinate base. These
representations are useful when converting tetrad compo-
nents to and from covariant ones.

4. Radiation moments and four-force density

Although radiation moments of all order are in principle
needed to describe arbitrarily anisotropic radiation field,
most radiation hydrodynamics deals with moments up to
order two, i.e., the zeroth, first, and second moments.
The radiation energy density (the zeroth moment), flux vec-
tor (the first moments), and pressure tensor (the second
moments) in the fixed tetrad are defined as

E ¼
Z Z

I mdmdX; F i ¼
Z Z

ImnidmdX;

P ij ¼
Z Z

ImninjdmdX; ð12Þ
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