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a b s t r a c t 

Recent LHC data provides precise values of coupling constants of the Higgs field, however, these mea- 

surements do not determine its coupling with gravity. We explore this freedom to see whether Higgs 

field non-minimally coupled to Gauss–Bonnet term in 4-dimensions can lead to inflation generating the 

observed density fluctuations. We obtain analytical solution for this model and that the exit of inflation 

(with a finite number of e-folding) demands that the energy scale of inflation is close to Electro-weak 

scale. We compare the scalar and tensor power spectrum of our model with PLANCK data and discuss its 

implications. 

© 2016 Published by Elsevier B.V. 

1. Introduction 

Cosmological Inflation [1–5] provides a causal mechanism to 

generate the primordial density perturbations that are responsible 

for the anisotropies in the cosmic microwave background (CMB) 

and the formation of the large scale structure (LSS). CMB and LSS 

data have been used to constrain the parameters of the inflationary 

model. In the case of canonical scalar field, the CMB and LSS data 

provide constraints on the height and the slope of the potential ref 

[6–8] . 

The fact that the temperature fluctuations of the CMB is close 

to scale-invariance is a highly demanding requirement for infla- 

tion model building ref [9–12] than providing approximately 60 

e-foldings of inflation needed to solve the various initial conditions 

problems. More specifically, the near scale-invariance imposes a 

condition that the canonical scalar field potential should be almost 

flat — almost like cosmological constant — so that the quantum 

fluctuations that exit the horizon during inflation is nearly scale- 

invariant. While these flat potentials are phenomenologically suc- 

cessful, however, in the standard model of particle physics there 

is no candidate with such flat potentials that could sustain infla- 

tion [9–12] . For instance, the renormalizability of the Higgs field 

in 4-dimensions puts a constraint on the scalar field potential 

( V (φ) = m 

2 φ2 + λφ4 , where m is the mass and λ is the coupling 

parameter), however, inflationary models require potentials of the 

form V (φ) = 

∑ N 
n =0 c 2 n φ

2 n where c 2 n ’s are real numbers and N > 2. 

To achieve the flatness of the potential, inflationary models 

using the standard model Higgs field as the inflaton, couples 

Higgs field non-minimally with gravity [13–18] . In Higgs Inflation 

∗ Corresponding author. 

E-mail address: jose@iisertvm.ac.in (J. Mathew). 

[13–15,19–25] , the flatness of the Higgs potential is achieved by 

large non-minimal coupling of the Higgs field to the Ricci scalar 

( ∼ ξR φ2 where ξ is the coupling constant and R is the Ricci scalar) 

i. e. ξ ∼ 10 4 . 

One of the main assumptions in the above models of Higgs 

inflation is that the standard model physics remains to hold un- 

til Planck energy. Which may be consistent with the current LHC 

measurements — since there are no evidence of new physics so 

far (e.g., supersymmetry or extra dimension(s), etc.) ref [26–28] —

however, it also points to the fact that λ can be negative at high 

energies [29–35] . But a non-minimal Higgs Ricci coupling may pre- 

vent this up to inflationary scale [20,23] . 

In this work, we ask the following question: Can Higgs field 

drive inflation without invoking any new Physics in the particle 

physics sector with exit at low-energies, order of 100 GeV to 

10 0 0 GeV? While the LHC measurements determine the coupling 

constants of the Higgs field precisely, it does not determine its cou- 

pling with Gravity. We use this freedom and assume that the Higgs 

field couples with the Gauss-Bonnet Gravity, instead of Ricci Scalar. 

Gauss-Bonnet Gravity is a part of the general extension of Grav- 

ity theories referred to as Lovelock theories of gravity [36] . One 

important feature of Lovelock theories, as against the f ( R ) grav- 

ity theories, is that the gravity equations of motion remain sec- 

ond order (and quasilinear in second order). They provide a nat- 

ural arena for understanding many deep features of gravity and 

recently they have been a subject of study. (For a recent review 

see [37] .) Some higher dimensional Lovelock theories arise also as 

a weak field limit of string theory [38,39] . While a pure Gauss- 

Bonnet term is non-dynamical in 4-dimensions — topologically in- 

variant in 4-dimensions — non-minimal coupling with the Higgs 

field makes it dynamical. 
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Since Gauss-Bonnet term is higher-derivative term, it may be 

natural to expect that non-minimal coupling of the scalar field may 

only lead to modifications at high-energies. However, in this work, 

we show explicitly that the non-minimal coupling of the Higgs 

scalar lead to exit of inflation at low-energies i.e. close to Elec- 

troweak scale. This an unique feature of our model. We also ex- 

plicitly compute the power-spectrum and show that it is consistent 

with the recent PLANCK data [8] . There has been recent interest in 

coupling scalar field with Gauss-Bonnet gravity (see, for instance, 

[18,40] ). Our analysis differs from their analyses: In Ref. [40] , au- 

thors have assumed that Einstein–Hilbert term is irrelevant and, 

hence, have ignored the linear term. In Ref. [18] , the authors have 

coupled the scalar field to both the Ricci and Gauss-Bonnet gravity. 

Their analysis is based on slow-roll and makes predictions similar 

to [15] . It is important to note that they found the Gauss-Bonnet 

term to be significant only at late times where as the Higgs-Ricci 

coupling dominating the initial epoch and was responsible for the 

spectrum. As mentioned earlier, our model couples the Higgs scalar 

with Gauss-Bonnet gravity leading to a dynamical model of infla- 

tion. 

The paper is organized as follows: In the next section, to get 

the physical picture of the dynamical equations, we obtain exact 

generalized power-law inflation for our model. We show that the 

generalized power-law solution exists only when the mass of the 

scalar field is identically zero. In Section 3 , we show that the Higgs 

potential leads to dynamical model of inflation where the exit oc- 

curs close to the electro-weak scale. We show that the non-zero 

Higgs mass lead to the exit. In Section 4 , we compute the power- 

spectrum of our model and compare the results with the recent 

PLANCK data. We discuss the key results and possible implications 

of our model in Section 5 . 

In this work, we consider (−, + , + , +) metric signature. We use 

natural units c = h̄ = 1 , κ = 1 /M 

2 
Pl 

, and M 

2 
Pl 

= 

h̄ c 
8 πG is the reduced 

Planck mass. We denote dot as derivative with respect to cosmic 

time t and H(t) ≡ ˙ a (t ) /a (t ) . 

2. Generalized power-law inflation 

Consider the following action where the scalar field φ is non- 

minimally coupled of Gauss–Bonnet ( L GB ) term: 

S = 

∫ 
d 4 x 

√ −g 

[ 
R 

2 κ
+ f (φ) L GB − 1 

2 

∇ a φ∇ 

a φ − V ( φ) 

] 
, (1) 

where R is the Ricci scalar, V ( φ) is the scalar field potential, f ( φ) is 

the coupling parameter and 

L GB = R 

2 − 4 R 

ab R ab + R 

abcd R abcd (2) 

Varying the action (1) w.r.t the field φ and the metric leads to the 

following equations of motion [41] : 

�φ + L GB f ,φ ( φ) − V ,φ ( φ) = 0 (3) 

1 

κ
G pq = 

(
8 G pq g 

ab ∇ ab f ( φ) + 4 R ∇ pq f ( φ) − 8 R 

a 
p ∇ aq f ( φ) 

− 8 R 

a 
q ∇ ap f ( φ) 8 ∇ ab f ( φ) R 

ab g pq − 8 ∇ ab f ( φ) R 

a b 
p q 

+ ∇ p φ∇ q φ − g pq 

(1 

2 

g ab ∇ a φ∇ b φ + V (φ) 
))

(4) 

It must be noted that the field equations being second order im- 

plies that this model doesn’t have the problem of unitarity. 

In this section, we are interested in obtaining exact solution for 

the above set of equations of motion for a spatially flat Friedmann–

Robertson–Walker (FRW) background 

d s 2 = −d t 2 + a (t) 2 
(
d x 2 + d y 2 + d z 2 

)
(5) 

where a ( t ) is the scale factor. The equation of the field φ( t ) and the 

scale factor a ( t ) follows from Eqs. (3) and ( 4 ), respectively 

−24 H 

2 ä 

a 
f ,φ ( φ) + φ̈ + V ,φ ( φ) + 3 H 

˙ φ = 0 (6a) 

−3 H 

2 
(

1 

κ
+ 8 H 

˙ f ( φ) 

)
+ 

1 

2 

˙ φ2 + V ( φ) = 0 (6b) 

−H 

2 
(

1 

κ
+ 8 ̈f ( φ) 

)
− 2 ̈a 

a 

(
1 

κ
+ 8 H 

˙ f ( φ) 

)
+ V ( φ) − 1 

2 

˙ φ2 = 0 (6c) 

It is important to note that the above differential equations are 

quasilinear i.e. they are linear with respect to all the highest order 

derivatives of a ( t ) and φ( t ). Rewriting Eqs. (6a) and ( 6b ), we get 

−2 H 

2 + κ ˙ φ2 − 24 κ H 

3 ˙ f ( φ) + 2 

ä 

a 
+ 16 κH 

ä 

a 
˙ f ( φ) 

+ 8 κH 

2 f̈ ( φ) = 0 (7) 

In the rest of this section, we consider the solution of (6) for the 

following ansatz 

a (t) = a 0 

(
t 

t 0 
+ ϒ

)p 

and φ = φ0 

(
t 

t 0 
+ ϒ

)n 

(8) 

where p > 1 is a constant; n is a constant; a 0 , t 0 are arbitrary 

constants whose values will not appear in any physical measured 

quantities and Y is given by 

ϒ = 

(
φ(t 0 ) 

φ0 

)1 /n 

− 1 . (9) 

Usually in cosmology, power-law inflation is given by a ( t ) ∝ t p . 

Ansatz (8) is a generalization. For real integer p , we have 

a (t) = a p t 
p + a p−1 t 

p−1 + a p−2 t 
p−2 + · · · + a 0 

where in our case the coefficients a p , a p−1 , · · · a 0 are related. Since, 

a ( t ) is a series, φ should also be a series like 

φ(t) = φn t 
n + φn −1 t 

n −1 + φn −2 t 
n −2 + · · · + φ0 

where, again, all the coefficients φn , φn −1 , · · ·φ0 . At t = t 0 , φ( t 0 ) � = 

φ0 and φ0 is an independent parameter. We refer to the above 

ansatz (8) for the scale factor as generalized power-law inflation. 

Substituting the above ansatz (8) in Eq. (6) , we get the follow- 

ing exact relations 

V ( φ) = 

˜ λ1 φ
− 2 

n + 

˜ λ2 φ
2(n −1) 

n + 

˜ λ3 φ
p−1 

n (10a) 

f ( φ) = ˜ α1 φ
2 
n + ˜ α2 φ

2(n +1) 
n + ˜ α3 φ

3+ p 
n (10b) 

where 

˜ λ1 = 

3 ( p − 1 ) p 2 

κ( p + 1 ) 

(
φ1 /n 

0 

t 0 

)2 

˜ λ2 = 

(5 n 

2 p − n 

2 + 2 n 

3 ) 

2(1 − 2 n + p) 

(
φ1 /n 

0 

t 0 

)2 

˜ λ3 = 24 p 3 C 

(
φ1 /n 

0 

t 0 

)1 −p 

˜ α1 = 

−1 

8 κ p(1 + p) 

(
φ1 /n 

0 

t 0 

)−2 

˜ α2 = 

n 

2 

16 p 2 (1 + n )(1 − 2 n + p) 

(
φ1 /n 

0 

t 0 

)−2 

˜ α3 = 

C 

p + 3 

(
φ1 /n 

0 

t 0 

)−(p+3) 

(11) 

and C is the constant of integration. 

The following points are important to note regarding the above 

generalized power-law solution: (i) The ansatz (8) is the most gen- 

eral power-law exact solution satisfying Eqs. (6) for the potential 

and coupling (10) and does not depend on the constant of inte- 

gration C . (ii) The above solutions are valid for any p > 1 and n . 

Imposing the condition that the potential be non-negative leads to 

n > −2 and C ≥ 0. (iii) The coefficient of the first term in RHS of 

(10a) dominates the coefficients of the other two terms. Similarly, 
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