
Astroparticle Physics 74 (2016) 47–50

Contents lists available at ScienceDirect

Astroparticle Physics

journal homepage: www.elsevier.com/locate/astropartphys

Astrophysical constraints on dark energy

Chiu Man Ho∗, Stephen D.H. Hsu

Department of Physics and Astronomy, Michigan State University, East Lansing, MI 48824, USA

a r t i c l e i n f o

Article history:

Received 24 June 2015

Accepted 29 September 2015

Available online 8 October 2015

Keywords:

Astrophysical constraints

Dark energy

Dwarf galaxies

Newtonian gravity

Rotation curves

a b s t r a c t

Dark energy (i.e., a cosmological constant) leads, in the Newtonian approximation, to a repulsive force which

grows linearly with distance and which can have astrophysical consequences. For example, the dark energy

force overcomes the gravitational attraction from an isolated object (e.g., dwarf galaxy) of mass 107M� at a

distance of 23 kpc. Observable velocities of bound satellites (rotation curves) could be significantly affected,

and therefore used to measure or constrain the dark energy density. Here, isolated means that the gravi-

tational effect of large nearby galaxies (specifically, of their dark matter halos) is negligible; examples of

isolated dwarf galaxies include Antlia or DDO 190.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

The discovery of dark energy, which accounts for the majority of

the energy in the universe, is one of the most significant of the last 20

years. While the repulsive properties of dark energy are well known

in the cosmological context, they have not been as thoroughly un-

derstood on shorter, astrophysical, length scales. Previous work has

constrained the cosmological constant on solar-system scales [1], but

its effects are obviously too small to be directly observed.

In what follows, we discuss the repulsive dark energy force and

its astrophysical effects on galactic scales. Because this force grows

linearly with distance, its effect is most likely to be significant for

weakly-bound satellites with large orbits. To detect the effects of

dark energy, we must first understand orbits resulting from ordi-

nary gravitational dynamics, with potentials mainly determined by

the distribution of dark matter. We find that observations of distant

satellites of isolated dwarf galaxies could be used to detect the ef-

fects of dark energy. Here, isolated means sufficiently far from other

sources of gravitational potential. When dwarf galaxy systems are not

sufficiently isolated, the orbits of their satellites are subject to tidal

forces from nearby large galaxies. These tidal forces can distort or-

bital shapes, and enforce an upper limit on orbital radii.

2. Newtonian gravity and cosmological constant

The Einstein equation with cosmological constant � is

Rμν − 1

2
gμν R = 8 π G Tμν + gμν �. (1)
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Contracting both sides with gμν , one gets R = −8 π G T − 4 � where

T ≡ T
μ
μ is the trace of the matter (including dark matter) energy-

momentum tensor. This can be substituted in the original equation

to obtain

Rμν = 8 π G

(
Tμν − 1

2
gμν T

)
− gμν �. (2)

In the Newtonian limit, one can decompose the metric tensor as

gμν = ημν + hμν with |hμν | � 1. Specifically, we are interested in the

00-component of the Einstein equation. We parameterize the 00th-

component of the metric tensor as

g00 = 1 + 2 �, (3)

where � is the Newtonian gravitational potential. To leading order,

one can show that [2]

R00 ≈ 1

2
�∇2 g00 = �∇2 �. (4)

In the inertial frame of a perfect fluid, its 4-velocity is given by uμ =
(1,�0) and we have

Tμν = ( ρ + p ) uμ uν − p gμν = diag( ρ , p ), (5)

where ρ is the energy density and p is the pressure. For a Newtonian

(non-relativistic) fluid, the pressure is negligible compared to the en-

ergy density, and hence T ≈ T00 = ρ . As a result, in the Newtonian

limit, the 00-component of the Einstein equation reduces to

�∇2 � = 4 π G ρ − �, (6)

which is just the modified Poisson equation for Newtonian gravity,

including cosmological constant. This equation can also be derived

from the Poisson equation of Newtonian gravity, �∇2 � = 4 π G (ρ +
3p), with source terms from matter and dark energy; p ≈ 0 for non-

relativistic matter, and p = −ρ for a cosmological constant.
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Table 1

Galaxy masses (units of solar mass M�) and the

corresponding rc .

Galaxy Mass rc

106M� 10.7 kpc

107M� 23.1 kpc

108M� 49.8 kpc

109M� 107 kpc

1010M� 231 kpc

1011M� 498 kpc

1012M� 1.07 Mpc

1013M� 2.31 Mpc

1014M� 4.98 Mpc

Assuming spherical symmetry, we have �∇2 � = 1
r2

∂
∂r

( r2 ∂�
∂r

) and

the Poisson equation is easily solved to obtain

� = −GM

r
− �

6
r2, (7)

where M is the total mass enclosed by the volume 4
3 π r3. The corre-

sponding gravitational field strength is given by

�g = −�∇ � =
(

−GM

r2
+ �

3
r

)
r̂. (8)

Therefore, the cosmological constant leads to a repulsive force whose

strength grows linearly with r.

One can also derive �g by starting with the de Sitter-Schwarzschild

metric [3]

ds2 =
(

1 − 2GM

r
− �

3
r2

)
dt2

−
(

1 − 2GM

r
− �

3
r2

)−1

dr2 − r2d	2 (9)

which describes the spacetime outside a spherically symmetric mass

distribution M in the presence of a cosmological constant �. One then

obtains Eq. (7) and hence Eq. (8) by identifying Eq. (3) with the 00-

component of the de Sitter-Schwarzschild metric.

3. Galaxies

The results obtained in previous section are relevant for galaxies.

For instance, in the presence of the cosmological constant �, Eq. (8)

describes the Newtonian gravitational field strength outside a galaxy

with a spherically symmetric mass distribution M. From Eq. (8), it is

clear that when r is sufficiently large, the repulsive dark force will

dominate over the gravitational attraction. The critical value of r be-

yond which this happens is given by

rc =
(

3 G M

�

)1/3

=
(

3 M

8 π ρ�

)1/3

, (10)

where ρ� = �
8 π G ≈ ( 2.3 × 10−3eV )4 is the observed energy density

of the cosmological constant. Table 1 displays galactic masses in units

of solar mass M� and the corresponding rc.

Typical galaxies, including our Milky Way, have total mass (in-

cluding dark matter) � 1011−12 M� and sizes ∼ 50 kpc. According to

Table 1, rc � 500 kpc for these galaxies, so the dark force is not likely

to affect internal dynamics, but may impact galaxy–galaxy interac-

tions [4], and limit the size of galaxy clusters (∼ 1014M�, size ∼ Mpc).

Some dwarf galaxies have total mass (including dark matter) ∼
107M�. These include Ursa Major II, Coma Berenices, Leo T, Leo IV,

Canes Venatici I, Canes Venatici II, and Hercules (analyzed by [5]), and

also Leo II [6] and Leo V [7]. The irregular galaxies Leo A [8], Antlia [9]

and DDO 190 [10] also have masses around 107M�.

For galaxies with mass ∼ 107M�, we have rc ∼ 23 kpc. Thus, their

galactic rotation curves could be affected by the dark force: rotational

velocities of stars or gas clouds bound to these galaxies should be

smaller than that predicted by ordinary Newtonian gravity. This in

turn could provide a novel way to measure the cosmological constant

in the future. Rotation curves for many galaxies have been measured

to radii of ∼ 30 kpc or more, and for some dwarf galaxies to ∼ 10 kpc

[11]. Low surface brightness (LSB) galaxies may also be worthy of in-

vestigation [12]. Some LSBs with total mass ∼ 1010M� have disks as

large as 100 kpc.

The Navarro–Frenk–White (NFW) profile [13] is a commonly used

parametrization of dark matter halo energy density:

ρ = ρ0

r/Rs (1 + r/Rs)
2
, (11)

where ρ0 is a characteristic halo density and Rs is the scale radius.

These two quantities vary from galaxy to galaxy. While the detailed

shape of the actual dark matter density may differ from the NFW pro-

file, the asymptotic 1/r3 behavior is widely accepted. Our results be-

low will not be sensitive to the density profile at small r.

Consider a dwarf galaxy (DG) and a larger galaxy (LG) (e.g., the

Milky Way) whose centers of mass are separated by a distance R, and

a satellite of the DG whose orbital radius is roughly r. If the distance

R is sufficiently large, we can neglect the gravitational potential of

the LG and treat the DG-satellite system as approximately isolated. In

that case, the values in Table 1 provide a rough guide for distances r

at which the dark energy force becomes significant. In the following

section we will investigate to what extent measurement of satellite

velocities can constrain the dark energy density around the DG.

But first let us examine in more detail under what circumstances

we can neglect the gravitational effects from the (dark matter halos)

of neighboring galaxies on the DG. We will assume an NFW profile

for both the DG halo and the larger galactic halo. The distance R from

the center of the DG to the center of the LG is generally not equal

to the distance from the satellite to the center of the LG, which can

vary from (R − r) to (R + r). Therefore, the gravitational pull exerted

on the satellite by the LG is different from the pull on the DG, lead-

ing to a tidal effect. (See [14] for previous work regarding the tidal

effects on orbiting satellites around their host galaxies.) This tidal ef-

fect is repulsive: it pulls apart the DG-satellite system. Perhaps sur-

prisingly, for many DGs (i.e., near the Milky Way), the tidal effect is

large enough to distort and even destabilize the satellite orbits.

Let the total mass of the DG enclosed within r be MDG(r) and that

of the LG enclosed within R ± r be MLG(R ± r). Then we have

MDG(r) =
∫ r

0

4 π r′2 ρDG(r′) dr′, (12)

MLG(R ± r) =
∫ R±r

0

4 π r′2 ρLG(r′) dr′. (13)

The circularity and stability of the satellite orbits can be guaranteed

by requiring that the magnitude of the tidal force due to the LG, F tidal
LG

,

is much smaller than the gravitational pull due to DG, FDG. This re-

quires

F tidal
LG ≈ G MLG(R)

R2

r

R
� FDG = G MDG(r)

r2
, (14)

which implies(
MLG(R)

MDG(r)

)1/3
r

R
� 1. (15)

According to [15], many dwarf galaxies are at least 100 kpc away from

the Milky Way and much farther from the Andromeda galaxy (M31).

Some of these dwarf galaxies with mass ∼ 107M� include Leo T, Leo

IV, Canes Venatici I, Canes Venatici II, Hercules, Leo II, Leo V, Leo A,

Antlia and DDO 190. Their distances from the Milky Way and M31 are

shown in Table 2.
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