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a b s t r a c t

The influence of non-thermal Dupree turbulence and the plasma shielding on the electron–ion collision is

investigated in astrophysical non-thermal Lorentzian turbulent plasmas. The second-order eikonal analysis

and the effective interaction potential including the Lorentzian far-field term are employed to obtain the

eikonal scattering phase shift and the eikonal collision cross section as functions of the diffusion coefficient,

impact parameter, collision energy, Debye length and spectral index of the astrophysical Lorentzian plasma.

It is shown that the non-thermal effect suppresses the eikonal scattering phase shift. However, it enhances

the eikonal collision cross section in astrophysical non-thermal turbulent plasmas. The effect of non-thermal

turbulence on the eikonal atomic collision cross section is weakened with increasing collision energy. The

variation of the atomic cross section due to the non-thermal Dupree turbulence is also discussed.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

The Yukawa-type Debye–Hückel model [1–4] has been widely

used for the study of collision and radiation processes in weakly

coupled Maxwellian plasmas where the average interaction energy

between particles is much less than the average kinetic energy.

However, supra-thermal particles are often found in astrophysical

plasmas such as solar flares, galactic cosmic ray, planetary mag-

netospheres, etc. [5–10]. If such supra-thermal particles exist, the

collective interaction of plasmas will alter the screening distance and

therefore it is required to obtain the effective screening distance by

selecting appropriate non-thermal plasma distribution function. We

shall employ the generalized Lorentzian distribution function which

effectively describes the supra-thermal particles deviated from the

Maxwellian distribution. If the plasma is turbulent, the projectile of

a moving particle will be affected by the fluctuating electric fields

since the response of the field fluctuations plays an important role in

the screened binary encounter [11–13]. Then, the effective potential

model [14] with the additional Lorentzian far-field term caused by

the longitudinal non-linear dielectric function can be applied to de-

scribe the potential of a projectile particle in astrophysical turbulent

plasmas.
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The theoretical work in this paper aims at the explicit investiga-

tion of the non-thermal turbulent and the shielding effects on the

elastic electron–ion collisions in astrophysical Lorentzian turbulent

plasmas. This will provide an insight into the scattering occurrence

time in the atomic or radiation processes in astrophysical turbu-

lent plasmas. To this end we employ the second-order eikonal anal-

ysis and the turbulence-effective interaction potential to derive the

eikonal scattering phase shift and the eikonal collision cross sec-

tion as functions of the diffusion coefficient, impact parameter, col-

lision energy, Debye length, and spectral index of the Lorentzian

plasma. In addition, the non-thermal turbulent shielding effects on

the electron–ion collision are compared and discussed with those in

astrophysical Maxwellian turbulent plasmas.

2. Effective Shukla–Spatschek potential and second-order

eikonal analysis

The generalized Lorentzian (kappa) distribution function in astro-

physical plasmas has been represented by the power-law of the ve-

locity in the form [6,7,9,10,15–18]:

fL(v) = �(κ + 1)

�(κ − 1/2)

[
m

2πκEL(κ)

]3/2
[

1 + mv2

2κEκ(κ)

]−κ−1

, (1)

Where v is the particle velocity, κ is the spectral index (κ > 3/2)
of the Lorentzian distribution, �(κ) is the Gamma function with

the argument κ , m is the particle mass and Eκ (κ) is the charac-

teristic energy. The characteristic energy in Lorentzian distribution
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is defined as EL(κ) = ET α
2(κ) where ET ≡ kBT with kB being the

Boltzmann constant, T being the plasma temperature and α(κ) ≡
[(κ − 3/2)/κ]1/2. The astrophysical Lorentzian distribution function

fL(v) enables us to express quite wide range of velocity distribu-

tions from the power-law form to the Maxwellian distribution. When

κ → ∞ or in the absence of the radiation field the Lorentzian dis-

tribution turns out to be the standard Maxwellian distribution such

as fL(v;κ → ∞) ∝ exp ( − mv2/2ET ) [6]. The effective shielding dis-

tance [10] λL(κ) in Lorentzian plasmas is represented by λL(κ) =
λDβ(κ), where λD( =

√
kBT/4πne2) is the standard Debye length in

Maxwellian plasmas with n being the total density of the plasma, e

being the electron charge, and β(κ) = [(κ − 3/2)/(κ − 1/2)]1/2. The

parameter β(κ) depicts the measure of the fraction of non-thermal

population in astrophysical Lorentzian plasmas. In turbulent plasmas,

Shukla–Spatschek potential [12] is useful for the effective screened

potential of a moving test charge. It can be obtained by employ-

ing the longitudinal non-linear plasma dielectric function contain-

ing the correction factor [14] e−Dq2t3/3 owing to the influence of

plasma turbulence caused by the fluctuation of electric field, where

D is the Dupree diffusion coefficient [19], q is the wave number

and t is the time. Then, the effective screened interaction potential

Veff(r, θ , κ) between the projectile electron and the ion with charge Ze

in astrophysical Lorentzian turbulent plasmas based on the Shukla–

Spatschek model [12] with the condition of v < vL including the non-

thermal shielding effect and the far-field term (r > λL) owing to the

influence of electric field fluctuations is represented by

Veff(r, θ , κ) = −Ze2

r
exp

[
− r

λL(κ)

]
− Ze2

r

2
√

2√
π

cos θ

[
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r

]2

×
[ v

vL(κ)

][
1 − 9

4

√
π

D

v3
L
(κ)

r

]
, (2)

where r[= (b2 + η2)1/2] is the distance between the projectile elec-

tron and the target ion, b is the impact parameter, η is the moving dis-

tance in the direction of the projectile electron, vL(κ) ≡ vT α(κ), vT =
λDωp, ωp is the plasma frequency, θ is the angle between v and r.

Eq. (2) is the effective Shukla–Spatschek potential Veff(r, θ , κ)

comprised of the Lorentzian effective Debye–Hückel term

[−Ze2e−r/λL(κ)/r] and the additional far-field terms owing to the

influence of random fluctuating electric fields in astrophysical

Lorentzian turbulent plasmas.

The eikonal scattering phase shift for the electron–ion colli-

sion in Lorentzian turbulent plasmas can be analytically calculated

by introducing the effective Shukla–Spatschek potential. Let ϕ(r) ∝
exp[iS(r)/h̄] be a wave function that satisfies the Hamilton–Jacobi

equation [20] for the non-relativistic Schrödinger equation with an

interaction potential given by

− ih̄

2μ
∇2S(r) + 1

2μ
[∇S(r)]2 + V(r) = E, (3)

where S(r) is the Hamilton–Jacobi phase function, h̄ is the rational-

ized Planck constant, μ is the reduced mass, V(r) is the interaction

potential and E is the energy of the collision system. The Hamilton–

Jacobi phase S(r) in Eq. (3) is obtained as

S(r) ∼= h̄ki · r − μ

h̄ki

∫ η

−∞
dη′V(r′), (4)

if |h̄∇2S(r)| << |[∇S(r)]
2| and |V(ri)|/E < 1 where η′ is the coordi-

nate normal to the momentum transfer �k( ≡ k f − ki) with ki and

k f being the incident and the final wave vectors, respectively, and ri

is the interaction range. Then the normalized eikonal wave function

[20] ϕek(r) is represented by

ϕek(r) ∼= (2π)−3/2 exp

[
iki · r − i

μ

h̄2ki

∫ η

−∞
dη′V(r′)

]
. (5)

Using the eikonal wave function given in Eq. (5), the eikonal scat-

tering amplitude fek(�k) would be written by

fek(�k)=− μ

2π h̄2

∫
d3rV(r) exp

[
i�k · r − i

μ

h̄2ki

∫ η′

−∞
dη′V(r′)

]

(6)

which is manipulated to give

fek(�k) = −ik

∫ ∞

0

dbb{exp[iξek(b, k)] − 1}J0(�kb) (7)

where b is the impact parameter, �k = 2k sin (χ/2), χ is the scatter-

ing angle between k f and ki, k ≡ |ki| = |k f | for the elastic collision,

ξek(b, k) is the total eikonal scattering phase shift, and J0(�kb) is the

zeroth-order first kind Bessel function. If we allow the method of the

second-order eikonal analysis [21], one can obtain the total eikonal

phase shift as

ξek(b, k) = 1

k
ξ1(b, k) + 1

k3
ξ2(b, k)

= − μ

h̄2k

∫ ∞

−∞
dη′V(b, η′)

+ μ2

2h̄4k3

∫ ∞

−∞
dη′

[(
b

∂

b∂b
ζ−(b, η′) + η′ ∂

η′∂η′ ζ−(b, η′)
)

·
(

b
∂

b∂b
ζ+(b, η′) + η′ ∂

η′∂η′ ζ+(b, η′)
)]

, (8)

where ξ1(b, k) and ξ2(b, k) are the first- and second-order eikonal

scattering phases, b∂/b∂b + η′∂/η′∂η′ is the gradient operator in

cylindrical coordinates and the first-term in RHS is the first-order

eikonal phase shift, ζ−(b, η) and ζ+(b, η) are the functions defined

by

ζ−(b, η) = − μ

2h̄2

∫ ∞

η

dη′V(b, η′), (9)

and

ζ+(b, η) = − μ

2h̄2

∫ η

−∞
dη′V(b, η′), (10)

respectively. Plugging the effective Shukla–Spatschek potential

Ve f f (r, θ , κ) into Eq. (8), we finally derive the total eikonal scattering

phase shift for the electron–ion collision in astrophysical Lorentzian

turbulent plasmas in the form of a dimensionless equation,

ξek(b̄, κ, Ē, ĒT , λ̄D, D̄)

∼= 2

Ē1/2
K0

(√
2κ − 1

2κ − 3

b̄

λ̄D

)
+ 2κ(2κ − 3)

(2κ − 1)
2

λ̄4
D

2Ē1/2ĒT

×
[

81π

4

(
2κ

2κ − 3

)3 D̄2

b̄3
− 48√

π

(
2κ

2κ − 3

)3/2 D̄

b̄4
+ 3

b̄5

]
, (11)

where b̄( ≡ b/aZ) is the scaled impact parameter, aZ( = a0/Z) is

the first Bohr radius of the hydrogenic ion with nuclear charge

Ze, a0( = h̄2/me2) is the Bohr radius of the hydrogen atom, −e

is the charge of the electron, Ē( ≡ μv2/2Z2Ry) is the scaled colli-

sion energy, Ry( = me4/2h̄2 ≈ 13.6 eV) is the Rydberg constant, ĒT ≡
ET /2Z2Ry, D̄( ≡ DaZ/v3

T
) is the scaled Dupree diffusion coefficient,

and K0 is the zeroth order modified Bessel function of the second

kind. If the influence of non-thermal turbulence is neglected on the

collision process, the eikonal scattering phase shift is reduced to

ξ ′
ek

(b̄, κ, Ē, λ̄D) = (2/Ē1/2)K0[
√

(2κ − 1)/(2κ − 3)b̄/λ̄D] which con-

tains the non-thermal shielding effect only and is also identical to

the case of the first-order eikonal analysis. Hence, the second-order

eikonal term is found to cause the non-thermal turbulence effect on
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