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a b s t r a c t

We analytically study the scalar perturbation of non-asymptotically flat (NAF) rotating linear dilaton black

holes (RLDBHs) in 4-dimensions. We show that both radial and angular wave equations can be solved in

terms of the hypergeometric functions. The exact greybody factor (GF), the absorption cross-section (ACS),

and the decay rate (DR) for the massless scalar waves are computed for these black holes (BHs). The results

obtained for ACS and DR are discussed through graphs.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Hawking’s semiclassical study [1] on BHs showed that BHs

emit particles from their “edge”, known as the event horizon. This

phenomenon is known as Hawking radiation (HR), named after

Hawking. In fact, HR arises from the steady conversion of quantum

vacuum fluctuations around into the pairs of particles, one of which

escaping at spatial infinity (SI) while the other is trapped inside the

event horizon. Calculations of HR reveal a characteristic blackbody

spectrum. Thus, putting quantum mechanics and general relativity

into the process, BHs become no longer “ black” but obey the laws

of thermodynamics. However, the spacetime geometry around BH

modifies HR by the so-called GFs. Namely, an observer at SI detects

not only a perfect black body spectrum but also a modification of this

since GFs are dependent upon both geometry and frequency [2].

The first papers of GFs (and its related subjects: ACS and DR) date

back to the nineteen-seventies [3–7]. Today, although there exists

numerous studies on the subject (see for example [8–10] and refer-

ences therein), the number of studies regarding rotating BHs is very

limited [11–15]. Even there have been very few studies devoted to

the NAF rotating BHs [16–18]. This scarcity comes from the technical

difficulty of getting exact analytical solution (EAS) to the considered

wave equation. In fact, EAS method (see for example [8,19,20])

applies to BH geometries which depend on a radial coordinate.
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In this paper, we study GF, ACS, and DR of the RLDBH in

4-dimensions, which is a solution to EMDA theory [21]. To this end,

we consider the massless scalar particle and mainly follow the stud-

ies of [19,22,23] for using EAS method. It is worth noting that the

GF problem (without considering the problem of ACS and DR) of the

RLDBH was firstly considered (in broad strokes) in [18]. However, as

being stated in the last paragraph of the conclusion of [18], the de-

tailed analysis of GF problem of RLDBH is not completed, and hence it

deserves more deeper research. Such an extension is one of the goals

of the present paper.

The paper is organized as follows. Section 2 introduces RLDBH ge-

ometry, and analyzes the Klein–Gordon equation (KGE) in this geom-

etry. The angular solution of the wave equation is given in Section 3.

Section 4 is devoted to the radial solution. GF, ACS, and DR computa-

tions are considered in Section 5. The paper ends with a conclusion

in Section 6.

2. RLDBH in the EMDA theory and KGE

In the Boyer–Lindquist coordinates, the metric of RLDBH which is

the stationary axisymmetric EMDA BH [21] is given by

ds2 = − f dt2 + dr2

f
+ h

[
dθ2 + sin

2 θ

(
dϕ − a

dt

h

)2
]

, (1)
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with the metric function

f = �

h
, (2)

where h = rr0 in which r0 is a positive constant. In fact, r0 is related to

the background electric charge and finely tunes the dilaton and axion

[21] fields, which are associated with the dark matter [24,25]. Besides

� = (r − r+)(r − r−), (3)

where r+ and r− are the outer (event) and inner (Cauchy) horizons,

respectively, given by the zeros of gtt:

r± = M ±
√

M2 − a2, (4)

where M is associated with the quasilocal mass (MQL) via M = 2MQL

[26], and a denotes the rotation parameter, which also tunes the both

dilaton and axion fields [21]. One can immediately see from Eq. (4)

that having a BH is conditional on M ≥ a. Otherwise, there is no hori-

zon and the spacetime corresponds to a BH with a naked singularity

at r = 0. The angular momentum (J) and a are related in the following

way: ar0 = 2J. When a vanishes, RLDBH reduces to its static form, the

so-called linear dilaton black hole (LDBH) metric. For studies of LDBH,

the reader is referred to [27–38]. The area (ABH), Hawking tempera-

ture (T H
RLDBH) and angular velocity (�H) at the horizon are found to be

[23]

ABH = 4π r0r+, (5)

T H
RLDBH = κ

2π
= ∂r f

4π

∣∣∣∣
r=r+

= r+ − r−
4π r0r+

, (6)

�H = 2
J

r2
0
r+

= a

r0r+
. (7)

It is worth noting that T H
RLDBH

vanishes at the extremal limit M =
a , i.e., r+ = r−. Moreover, as a → 0 (r− → 0), T H

RLDBH
→ T H

LDBH
= 1

4π r0

which is independent of the mass of the BH, and points an isothermal

HR [27,32].

The massless KGE equation in a curved spacetime is given by

∂μ

(√−ggμυ∂υ

)

= 0. (8)

It is straightforward to show that Eq. (8) separates for the solu-

tion ansatz of the form 
 = ψ(r, θ)ei(mϕ−ωt), where m and ω are

constant associated with rotation in the ϕ-direction and frequency,

respectively. Thus, we can obtain the following master equation:

∂r(�∂rψ) + ∂θ ( sin θ∂θψ)

sin θ
+

[
(hω − am)

2

h f
−

(
m

sin θ

)2
]
ψ = 0.

(9)

If we let ψ = R(r)(θ), Eq. (9) is separated into radial and angular

equations as follows

�∂r(�∂rR) +
[
(hω − am)2 − λ�

]
R = 0, (10)

∂θ ( sin θ∂θ) + sin θ

[
λ −

(
m

sin θ

)2
]
 = 0, (11)

where λ denotes the eigenvalue.

3. Solution of the angular equation

In order to have the general solution to Eq. (10), we introduce a

new dimensionless variable as follows:

z = 1 − cos θ

2
, (12)

so that Eq. (11) becomes

z(1 − z)∂yy + (1 − 2z)∂y +
[

4z(z − 1)λ + m2

4z(z − 1)

]
 = 0. (13)

One can rewrite the factor of  in the third term of Eq. (13) as

follows:

4λz(z − 1) + m2

4z(z − 1)
= λ − m2

4z
+ m2

4(z − 1)
, (14)

Letting

 =
(

1 − z

z

) m
2

�(z), (15)

Eq. (13) is transformed into

z(1 − z)∂zz� +
[
c − (1 + a + b)z

]
∂z� − ab� = 0. (16)

The above equation resembles the standard hypergeometric equa-

tion [39] whose solution is given by

� = C1F
(
a, b; c; z

)
+ C2z1−cF

(
a − c + 1, b − c + 1; 2 − c; z

)
, (17)

where F
(
a, b; c; z

)
is the standard (Gaussian) hypergeometric func-

tion [39], and C1, C2 are integration constants. By performing a few

algebraic manipulations, one obtains the following identities

a = 1

2
(1 −

√
4λ + 1), (18)

b = 1 − a = 1

2
(1 +

√
4λ + 1), (19)

c = 1 − m. (20)

Consequently, the general angular solution reads

 = C1

(
1 − z

z

) m
2

F
(
a, b; c; z

)
+ C2

[
z(1 − z)

] m
2

× F
(
a − c + 1, b − c + 1; 2 − c; z

)
. (21)

However, we need the normalized angular solution [40]. For this

purpose, we initially set C2 = 0, and assign the eigenvalue to

λ = l(l + 1), (22)

where l = 0, 1, 2, 3 . . .. Using the following transformation [41]:

F(a, 1 − a; c; z) =
( −z

1 − z

)(1−c)/2

P(−a, 1 − c, 1 − 2z), (23)

where P denotes the associated Legendre polynomials [39], we re-

express

 = Ĉ1P(l, m, 1 − 2z), (24)

which can rewritten as

 = Ĉ1P(l, m, cos θ), (25)

where Ĉ1 = C1( − 1)
m
2 . Employing the orthonormality relation [40]

for the associated Legendre functions and taking eimϕ into account,

we obtain the physical angular solution in terms of the spherical har-

monics [41]:

Yl,m(θ, ϕ) = eimϕ

√
(2l + 1)(l − m)!

4π(l + m)!
P(l, m, cos θ), (26)

where the index l corresponds to the well-known azimuthal quantum

number, and m denotes the magnetic quantum number (integer) with

−l ≤ m ≤ l.
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