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a b s t r a c t

We discuss the radio emission from high-energy cosmic-ray induced air showers hitting Earth’s surface be-

fore the cascade has died out in the atmosphere. The induced emission gives rise to a radio signal which

should be detectable in the currently operating Askaryan radio detectors built to search for the GZK neutrino

flux in ice. The in-air emission, the in-ice emission, as well as a new component, the coherent transition

radiation when the particle bunch crosses the air–ice boundary, are included in the calculations.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

We calculate the radio emission from cosmic-ray-induced air

showers as a possible (background) signal for the Askaryan radio-

detection experiments currently operating at Antarctica [1–3]. A

high-energy neutrino interacting in a medium like (moon)-rock, ice,

or air will induce a high-energy particle cascade. In 1962 Askaryan

predicted that during the development of such a cascade a net neg-

ative charge excess arises mainly due to Compton scattering [4]. This

net excess charge by itself will induce a radio signal that can be

used to measure the original neutrino. This Askaryan radio emission

[4–6] has been confirmed experimentally at SLAC [7], and more re-

cently the Askaryan effect was also confirmed in nature by the radio

emission from cosmic-ray induced air showers [8–10].

For high-energy cosmic-ray air showers, along with the Askaryan

emission, there is another emission mechanism due to a net trans-

verse current that is induced in the shower front by Earth’s mag-

netic field [11–14]. Recently the radio emission from cosmic-ray air

showers has been measured in great detail by the LOFAR collabora-

tion [10,15,16], confirming the predictions from several independent

radio emission models [17–20].

Most Askaryan radio detectors [1–3,21–23] search for so-called

GZK neutrinos that are expected from the interaction of ultra-high-

energy cosmic-ray protons with the cosmic microwave background
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[24,25]. The expected GZK neutrinos are extremely energetic with en-

ergies in the EeV range, while the flux at these energies is expected to

fall below one neutrino interaction per cubic kilometer of ice per year.

Therefore, to detect these neutrinos an extremely large detection vol-

ume, even larger than the cubic kilometer currently covered by the

IceCube experiment, is needed. Due to its long attenuation length, the

induced radio signal is an excellent means to detect these GZK neu-

trinos. This has led to the development of several radio-detection ex-

periments [1–6,26–30]. Nevertheless, the highest-energy neutrinos

detected so-far are those observed recently by the IceCube collabora-

tion [31] and have energies up to several PeV, just below the energies

expected from the GZK neutrino flux.

In this article we calculate the radio emission from cosmic-

ray-induced air showers as a possible (background) signal for the

Askaryan radio-detection experiments currently operating at Antarc-

tica [1–3]. Besides the emission during the cascade development

also transition radiation should be expected when the cosmic ray air

shower hits Earth’s surface [32,33]. It follows that the induced emis-

sion is very hard to distinguish from the direct Askaryan emission

from a high-energy neutrino induced cascade in a dense medium

such as ice.

2. Radio emission from a particle cascade

We start from the Liénard–Wiechert potentials for a point-like

four current from classical electrodynamics and closely follow the

macroscopic MGMR [34] and EVA [20] models. Both models were

developed to describe the radio emission from cosmic-ray-induced
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Fig. 1. The geometry used to calculate the radiation emitted from a charge cloud

crossing a boundary at z = zb. The observer is positioned at an impact parameter

d =
√

(x − rx)2 + (y − ry)2.

air showers. The Liénard–Wiechert potentials for a point charge,

A
μ
PL

(t, �x), as seen by an observer positioned at �x at an observer time t

are obtained directly from Maxwell’s equations after fixing the Lorenz

gauge [35],

A
μ
PL
(t, �x) = 1

4πε0

Jμ

|D|
∣∣∣

ret

. (1)

The point-like current is defined by Jμ = eVμ, where e is the charge,

and Vμ is the four-velocity for a particle at �ξ(tr) where the retarded

emission time is denoted by tr. The denominator of the vector poten-

tial, D, is the retarded four-distance. For an extended current with

longitudinal dimension h and lateral dimensions �r, the vector po-

tential has to be convolved with the charge distribution given by the

weight function w(�r, h),

Aμ(t, �x) = 1

4πε0

∫
dh d2r

Jμw(�r, h)

|D|
∣∣∣∣

ret

, (2)

where the vector potential has to be evaluated at the retarded

emission time tr. The corresponding geometry is denoted in Fig. 1.

We consider an observer positioned at an impact parameter d =√
(x − rx)2 + (y − ry)2 perpendicular to the charge track, where rx,

and ry denote the lateral position of the considered charge within

the charge cloud. Defining the element in the plane of the observer

perpendicular to the charge-track as z = 0, we can define the time at

which the front of the charge cloud crosses this plane to be t = 0. Us-

ing these definitions the position of the charge along the track is now

given by z = −ctr + h.

Fixing the geometry, the vector potential can now be evaluated.

The retarded emission time is obtained from the light-cone condition

with respect to the optical path length L,

c(t − tr) = L, (3)

from which the relation between the observer time and the emission

time, tr(t), can be obtained. It should be noted that tr is a negative

quantity. For a medium consisting out of m layers with different index

of refraction ni, the optical path length can be defined by

L =
m∑

i=1

nidi, (4)

where the distance di, the distance covered by the emission in layer

i, is obtained by using a ray-tracing procedure based on Snell’s law.

Following [36], the retarded distance for a signal traveling through

different media is given by,

D = L
dt

dtr
. (5)

In this work the index of refraction is assumed to be independent of

frequency within the radio frequency range starting from a few MHz,

up to several GHz. In the simplified situation where the signal travels

through a medium with constant index of refraction n, the retarded

distance can be written in the more common form,

D = nR(1 − nβ cos (θ)) , (6)

where θ denotes the opening angle between the line of sight from the

emission point to the observer and the direction of movement of the

emitting charge.

2.1. Cherenkov effects for a single electron

For a single electron moving at a highly relativistic velocity �β =
�v/c ≈ 1 along the z-axis (by definition), the current is given by Jμ =
e (1, 0, 0,−β). The electric field is now obtained directly from the Lié-

nard–Wiechert potentials through,

Ei(t, �x) = −dA0

dxi
− dAi

dct
, (7)

where i = x, y gives the polarization of the field in the transverse di-

rection, and xi denotes the observer position in the transverse plane

(x1 = x, x2 = y). For the moment we will ignore the electric field in

the longitudinal direction and, since Ai ∝ Ji = 0 for i = 1, 2 (there is

no transverse current), we only have to consider the spatial deriva-

tive of the scalar potential. The electric field in the longitudinal di-

rection will in general be small and can easily be calculated following

the gauge condition �k · �ε = 0, where �k is the momentum vector of the

photon and �ε the polarization. Hence the photon cannot be polarized

along its direction of motion. Starting at the zeroth component of the

vector potential, the spatial derivative can be evaluated by,

dA0

dxi
= ∂

∂xi
A0, (8)

which corresponds to the radiation from a net charge moving through

the medium. For a relativistic electron (β ≈ 1) moving in a medium

with a refractive index n > 1 this term becomes,

Ei
st(t, �x) = − ∂

∂xi
A0 = −e

4πε0

(1 − n2)xi

|D|3
, (9)

where the label ‘st’, denotes that the field is due to a highly relativistic

non time-varying steady charge. The emission shows a radial polar-

ization direction and vanishes linearly with the distance of the ob-

server to the shower core. This component of the electric field is sup-

pressed by the factor 1 − n2, which vanishes in vacuum. In a medium

with an index of refraction larger than unity, however, this factor does

not vanish and Cherenkov radiation is observed at the point where

the retarded distance vanishes, D =
√

t2 + (1 − n2β2)(x2 + y2) = 0.

The retarded distance vanishes at the finite Cherenkov angle

cos (θCH) = 1
nβ

(see Eq. (6)) where the electric field diverges. One in-

tuitive way to understand the Cherenkov effect follows from the more

general definition of D given in Eq. (5). For a vanishing retarded dis-

tance, the derivative dt/dtr has to vanish. It follows that the function

t(tr) is flat at this point. Hence at an observer time t, signals emit-

ted at different emission times tr will be observed at once, leading to

a boosted electric field. The vanishing of the retarded distance leads

to a divergence in the electric field expressions. These divergences are

integrable and therefore disappear for coherent emission by perform-

ing an integration over the finite charge and current distributions in

the shower front [20].
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