ELSEVIER

Contents lists available at SciVerse ScienceDirect

Dyes and Pigments

journal homepage: www.elsevier.com/locate/dyepig

A selective fluorescent chemosensor with 1, 2, 4-triazole as subunit for Cu (II) and its application in imaging Cu (II) in living cells

Jun Zhang*, Chunwei Yu, Shiyun Qian, Gang Lu, Jinlong Chen

School of Tropical and Laboratory Medicine, Hainan Medical University, Haikou 571101, China

ARTICLE INFO

Article history: Received 9 September 2011 Accepted 22 September 2011 Available online 4 October 2011

Keywords: Rhodamine derivative Fluorescent chemosensors Triazole Metal ions Fluorescence enhancement Fluorescence imaging

ABSTRACT

A chemosensor based on rhodamine B with 1, 2, 4-triazole as subunit was synthesized and characterized. It exhibits high selectivity and sensitivity for Cu^{2+} in ethanol/water (6:4, v:v) of pH 7.0 HEPES buffer solution and undergoes ring opening mechanism, and a 2:1 metal—ligand complex is formed. The chemosensor displays a linear response to Cu^{2+} in the range between 1.0×10^{-7} M and 1.0×10^{-6} M with a detection limit of 4.5×10^{-8} M. Its capability of biological application was also evaluated and the results show that this chemosensor could be successfully employed as a Cu^{2+} -selective chemosensor in the fluorescence imaging of living cells.

© 2011 Elsevier Ltd. All rights reserved.

1. Introduction

Detecting the presence of transition metal ions has received considerable attention, mostly because these metal ions play important roles in living systems and have an extremely ecotoxicological impact on the environment and human. Among the various transition metal ions, Cu²⁺ plays a critical role as a catalytic cofactor for a variety of metalloenzymes, including superoxide dismutase, cytochrome c oxidase and tyrosinase [1]. However, under overloading conditions, Cu²⁺ exhibits toxicity in that it causes neurodegenerative diseases, probably by its involvement in the production of reactive oxygen species [2]. Chemosensors based on ion-induced changes in fluorescence appear to be particularly attractive due to their simplicity, high sensitivity, high selectivity, and instantaneous response [3]. Therefore, numerous excellent studies focus on the design of fluorescent chemosensors and the analysis of Cu²⁺. Most of the reported Cu²⁺ fluorescent chemosensors, however, generally undergo fluorescence quenching upon the binding of Cu^{2+} [4–10], which is not as sensitive as a fluorescence enhancement response. Therefore, the development of highly sensitive and selective "off-on" chemosensor for Cu²⁺ is necessary. Based on our previous research [11-13], it is necessary to choose an efficient fluorophore and consider the geometry of coordination sites for a certain cation. Herein, we describe a new

and simple fluorescent Cu^{2+} chemosensor $\bf L$ based on the equilibrium between the spirolactam (non-fluorescence) and the ring-opened amide (fluorescence) of rhodamine derivatives. In chemosensor $\bf L$, we chose the rhodamine derivative as the fluorophore due to its excellent photophysical properties, such as long wavelength absorption and emission, high fluorescence quantum yield, large extinction coefficient, and high stability against light [14]. In addition, to take advantage of the 1, 2, 4-triazole subunit containing lone electron pairs on N, the semirigid ligand could effectively chelate Cu^{2+} according to the ionic radius and limit the geometric structure of the complex. With this intention, a Cu^{2+} -specific fluorescent and colorimetric chemosensor $\bf L$ derived from rhodamine B with 1, 2, 4-triazole as subunit was designed and synthesized (Scheme 1).

2. Experimental

2.1. Reagents and instruments

All reagents and solvents are of analytical grade and used without further purification. The metal ions and anions salts employed are NaCl, MgCl $_2$ ·6H $_2$ O, CdCl $_2$, HgCl $_2$, CaCl $_2$ ·2H $_2$ O, FeCl $_3$ ·6H $_2$ O, CrCl $_3$ ·6H $_2$ O, Zn(NO $_3$) $_2$ ·6H $_2$ O, AgNO $_3$, CoCl $_2$ ·6H $_2$ O, MnCl $_2$ ·4H $_2$ O, CuCl $_2$ ·2H $_2$ O, NiCl $_2$ ·6H $_2$ O, PbCl $_2$, NaClO, NaNO $_3$, Na $_2$ CO $_3$, NaCl, NaAc, NaClO $_4$, KBr and Na $_2$ HPO $_4$, respectively.

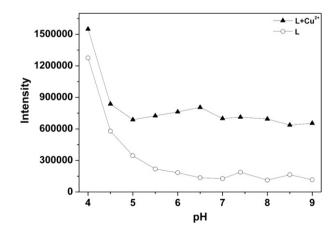
Fluorescence emission spectra were conducted on a HORIBA Fluoromax-4 spectrofluometer. UV—vis spectra were obtained on a Beckman DU-800 spectrophotometer (USA). Nuclear magnetic

^{*} Corresponding author. Tel.: +86 898 66973190; fax: +86 898 66989173. E-mail address: jun_zh1979@163.com (J. Zhang).

Scheme 1. Synthesis route of L.

resonance (NMR) spectra were measured with a Brucker WM-300 instrument and chemical shift were given in ppm from tetramethylsilane (TMS). Mass (MS) spectra were recorded on a Thermo TSQ Quantum Access Agillent 1100. Fluorescence imaging was performed by confocal fluorescence microscopy on an Olympus FluoView Fv1000 laser scanning microscope (USA). Melting points were taken on a WRS-1B digital melting-point apparatus.

2.2. Synthetic procedure


2.2.1. Synthesis of compound 2

Compound 1 was synthesized as described before [15]. Under N2 gas, salicylaldehyde (2.4 mmol) and Na₂CO₃ (4.0 mmol) were combined in DMF (40 mL) and stirred. Compound 1 (1.0 mmol) in DMF (10 mL) was added dropwise. The reaction mixture was stirred at 80 °C for 24 h, and then was poured into 500 mL cooled water, and the precipitate so produced was filtered off and recrystallized with ethanol to give 2 as white solid. Yields: 85.2%. M.p.: 116.1–117.2 °C. MS (ES+) m/z: 338.2 (M-THP+H⁺). ¹H NMR (δ ppm, $CDCl_3$): 10.52 (s, 1H), 10.44 (s, 1H), 7.86 (t, 1H, J = 4.40 Hz), 7.74 (t, 1H, J = 4.40 Hz), 7.58 (d, 1H, J = 12.00 Hz), 7.54 (d, 1H, J = 12.00 Hz), 7.20 (s, 2H), 7.18 (s, 2H), 7.12 (t, 1H, J = 16.00 Hz), 7.06 (t, 1H, I = 16.00 Hz), 5.66 (d, 1H, I = 8.00 Hz) 5.43 (s, 2H), 5.27 (s, 2H), 4.00 I = 16.00 Hz), 2.09 (m, 1H, I = 17.20 Hz), 1.99 (m, 1H, I = 10.00 Hz), 1.71 (m, 2H, I = 12.80 Hz), 1.62 (m, 2H, I = 18.40 Hz). ¹³C NMR (δ ppm, CDCl₃): 189.78, 189.05, 160.84, 159.60, 158.25, 151.61, 135.97, 135.70, 129.30, 128.18, 125.44, 125.29, 122.06, 121.40, 113.37, 113.05, 85.02, 61.52,29.61, 24.59, 21.79, 67.67, 63.99.

2.2.2. Synthesis of compound L

Compound **3** was synthesized according to reported method [16]. Compound **2** (1.0 mmol) and compound **3** (2.2 mmol) were mixed in 30 mL ethanol and refluxed for 4 h. After cooling to room temperature, the precipitate so obtained was washed with water and ethanol, and then dried in vacuum. The **L** was obtained by recrystallization with ethanol as pale yellow solid. Yields: 75.3%. M.p.: 186.2–187.8 °C. MS (ES+) m/z: 1320.96 (M+Na⁺). ¹H NMR (δ ppm, CDCl₃): ¹H NMR: 9.37 (s, 1H), 9.30 (s, 1H), 7.96 (s, 1H), 7.95 (s,

1H), 7.9 (d, 1H, J = 7.5 Hz), 7.76 (d, 1H, J = 6.55 Hz), 7.51 (d, 1H, J = 6.05 Hz), 7.48 (d, 1H, J = 1.60 Hz), 7.47 (s, 1H), 7.46 (d, 1H, J = 1.75 Hz, 7.44 (d, 1H, J = 7.25 Hz), 7.17 (d, 2H, J = 4.26 Hz), 7.13 (m, 2H, J = 6.69 Hz), 6.98 (s, 1H), 6.96 (s, 1H), 6.90 (t, 2H, 1H)J = 9.36 Hz), 6.87 (m, 1H, J = 3.35 Hz), 6.84 (m, 1H, J = 7.50 Hz), 6.52 (s, 1H), 6.50 (d, 2H, J = 1.85 Hz), 6.49 (d, 1H, J = 2.90 Hz), 6.44 (d, 1H, J = 2.90 Hz)J = 2.35 Hz), 6.42 (m, 3H, J = 6.63 Hz), 6.24 (d, 2H, J = 8.16 Hz), 6.22 (d, 1H, J = 2.20 Hz), 5.55 (d, 1H, J = 10.86 Hz), 5.19 (s, 2H, 1.50)J = 2.80 Hz), 5.03 (s, 2H, J = 2.65 Hz), 3.82 (d, 1H, J = 6.39 Hz), 3.54 (t, 1H, J = 11.37 Hz), 3.30 (m, 8H, J = 10.35 Hz), 2.21 (m, 1H, J = 12.33 Hz), 2.17 (d, 1H, J = 10.32 Hz), 1.95 (t, 1H, J = 7.90 Hz), 1.86 (d, 1H, I = 6.18 Hz), 1.62 (d, 1H, I = 12.00 Hz), 1.56 (m, 1H, 1.56)I = 14.10 Hz), 1.12 (t, 12H, I = 14.85 Hz). ¹³C NMR (δ ppm, CDCl₃): 164.56, 164.48, 158.87, 157.62, 156.34, 153.51, 153.47, 153.38, 152.01, 151.62, 151.33, 148.83, 148.78, 144.97, 144.15, 133.17, 132.99, 131.04, 130.63, 130.09, 130.05, 128.29, 128.11, 128.04, 126.62, 126.32, 125.20, 124.82, 124.04, 123.92, 123.23, 121.99, 121.44, 114.36, 113.44, 107.90, 107.84, 107.81, 106.51, 106.47, 98.01, 97.92, 84.51, 67.40, 66.32, 66.19, 64.92, 62.10, 58.46, 53.43, 44.31, 29.71, 29.48, 24.75, 21.77, 18.45, 12.56, 12.62.

Fig. 1. Influences of pH on the fluorescence spectra of **L** (1.0 μ M) (\bigcirc) and **L** (1.0 μ M) plus Cu²⁺ (50 μ M) (\blacktriangle) in ethanol—water solution (6:4, v:v). The pH was modulated by adding 1 M HCl or 1 M NaOH in HEPES buffers.

Download English Version:

https://daneshyari.com/en/article/177059

Download Persian Version:

https://daneshyari.com/article/177059

<u>Daneshyari.com</u>