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a b s t r a c t

This study investigates the stability of a class of radiating viscous self-gravitating stars with axial
symmetry having anisotropic pressure. We use perturbation technique to establish the perturbed form
of the Einstein field equations and dynamical equations. The instability range in the Newtonian and
post-Newtonian eras has been analyzed by constructing the collapse equation. It is found that the
adiabatic index has a key role in the discussion of instability ranges which depends upon the physical
parameters, i.e., energy density, anisotropic pressure and shear viscosity of the fluid and heat flux. We
conclude that the shear viscosity decreases the instability range and makes the system more stable.

� 2014 Elsevier B.V. All rights reserved.

1. Introduction

Gravitational theories have some outstanding issues in the
discussion of instabilities of massive stars and have gone through
extensive developments in recent years. The formation of
self-gravitating objects and their evolution is associated with
dynamical instability which is usually generalized with anisotropic
matter distribution. Pressure anisotropy is identified as one of the
main factors in stellar models which makes the fluid imperfect
through different mechanisms. Herrera and Santos [1] investigated
pressure anisotropy for self-gravitating objects whose role has
been examined in static stellar configurations by different authors
[2]. Chan et al. [3] analyzed the dynamical instability of anisotropic
matter in the collapse scenario. Many phenomena such as the solid
core, phase transition, mixture of two fluids, slow rotation and pion
condensation can generate anisotropy in the star model [1,2,4]. The
anisotropy of the system increases with the inclusion of shear
viscosity in the matter distribution.

Many investigations are devoted to study the effects of viscosity
in the matter distribution which has physical justification [5]. A
normal star is in hydrostatic equilibrium due to the balance of
external and internal forces. When one of these forces overcomes
the other than stability of the star is affected and collapse may take
place. Chan [6] studied the effects of viscosity on the stability of
collapsing fluid distribution. Joshi et al. [7] found that the shearing

effects slow down the apparent horizon formation and hence the
collapse rate due to irregular final stages of the collapse.

During the formation and evolution of astrophysical objects,
energy radiates in large amount at different states in the form of
photons and neutrinos. This radiated energy increases gradually
and is described by two approximations: one is the diffusion
approximation and the other is free streaming approximation.
We have discussed the evolution of shear and expansion through
Raychaudhuri equation for radiating viscous fluid [8]. Sharma
and Tikekar [9] analyzed the collapse of radiating spherical star
in the form of heat flux with the induction of inhomogeneous
perturbations and anisotropic pressure in FRW geometry. Recently,
we have investigated some exact solutions of non-viscous heat
conducting collapsing fluid and examined surface temperature of
the system at large past time [10].

In general relativity, the study of perturbation has gained inter-
est due to two major reasons out of which one corresponds to the
stability of self-gravitating objects. The important aspect is the
instability of linear perturbations in higher order theories [11] but
one cannot find that what extent the linear perturbation can decide
the stability issue. Chandrasekhar [12] is known due to his pioneer
work on spherical star with perfect fluid to understand the dynam-
ical instability. The leading term which describes the instability
range is the C (adiabatic index) factor for Newtonian (N) regime.
Sorkin et al. [13] explored the instability of radiating spherical star.
Herrera et al. [14] extended Chandrasekhar work for dissipative
fluids. Boehmer and Harko [15] examined the instability of spherical
system with cosmological constant in the presence of perfect fluid.
Bisnovatyi-Kogan and Tspuko [16] observed that the loss of stability
would lead to collapse yielding a black hole or neutron star.
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Herrera et al. [17] examined the instability of spherical system
with anisotropic pressure and expansion-free case through linear
perturbation. Sharif and Bhatti [18] investigated shearfree collapse
of charged spherical star and found that the shearfree condition
makes the system more stable by slowing down the collapse rate.
Sharif and Yousaf [19,20] discussed the instability ranges in f ðRÞ
gravity using perturbation scheme of collapsing models and found
that C is a key factor in the dynamical instability of self-gravitating
fluids. The deviations from spherical systems have great signifi-
cance in the instability analysis. In recent papers, we have explored
the effects of electromagnetic field on the instability ranges of
anisotropic expansion-free [21] and radiating [22] cylinders. It is
found that C does not play any role in the expansion-free case
but for radiating cylinder, the instability range depends upon C.

It is known that a rotating star is more stable against collapse than
the non-rotating and stationary rotating objects carry axial symme-
try. Stars in nature are usually rotating based on rotational instabili-
ties in non-axis symmetry. The static axially symmetric solutions
with and without the effects of electromagnetic field are formulated
in literature which corresponds to the Schwarzschild metric and
charged solution, respectively in spherical limit [23]. Recently, we
have analyzed the role of C in the instability range of a restricted class
of non-static axial symmetry with anisotropic pressure [24].

This study extends the above work to radiating anisotropic vis-
cous matter distribution for the instability regions of a restricted
class of non-static axially symmetric spacetime. The paper is orga-
nized as follows. In the next section, we describe the fluid config-
uration compatible with the axial symmetry, the corresponding
field equations as well as the dynamical equations. Section 3 ex-
plores the dynamics of axial symmetry through perturbation tech-
nique and formulates the collapse equation. We study instability
regions in N and post-Newtonian (pN) eras in Section 4. Finally,
we conclude our results in Section 5.

2. Matter distribution and field equations

We consider a restrictive class of non-static axial symmetry
which excludes explicitly dtd/ terms representing the rotations
around the symmetry axis as well as the reflection terms. Inclusion
of ‘‘reflection’’ and ‘‘rotation’’ terms with four independent metric
functions would make our analysis quiet complicated which is very
difficult to handle analytically. For the sake of convenience, we ex-
clude these terms and the corresponding non-static axially sym-
metric spacetime in spherical coordinates reduces to [24]

ds2 ¼ �A2ðt; r; hÞdt2 þ B2ðt; r; hÞðdr2 þ r2dh2Þ þ C2ðt; r; hÞd/2: ð1Þ

We assume that the system is filled with radiating anisotropic mat-
ter suffering with shear viscosity in its flow. The energy–momen-
tum tensor for such a system is defined as

TðmÞab ¼ ðlþ PÞVaVb þ Pgab � 2grab þ qaVb þ qbVa þPab; ð2Þ

where
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Pxx; Pyy; Pzz; l are different pressures and energy density, respec-
tively, with Pxy ¼ Pyx and Pxx – Pyy – Pzz. Also, Va; La; Ka; qa; g;
rab are the four velocity, unit four-vectors, heat flux, coefficient of
shear viscosity and the shear tensor, respectively, a; b are the Lor-
entz indices. In comoving coordinate system, these quantities have
the following form

Va ¼ �Ad0
a; Ka ¼ Bd1

a; La ¼ Brd2
a; qa ¼ qB�1da

1: ð3Þ

The non-vanishing components of the kinematical variables
[25], i.e., the expansion scalar H, the four acceleration aa and the
shear tensor rab, related with the given fluid distribution turn
out to be
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where dot, prime and subscript h indicate differentiation with re-
spect to t; r and h, respectively. The Misner–Sharp mass function
[26] corresponding to Eq. (1) yields

m ¼ r3B
2

_B2

A2 �
B2

h

r2B2 �
2B0

rB
� B02

B2

 !
:

The scalar curvature corresponding to (1) is
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The Einstein field equations provide the following set of
equations

jl ¼ 1

A2

_B2

B2 þ 2
_B _C
BC

 !
� 1

B2

B00

B
þ 1

r
B0

B
þ C 0

C

� ��

� B0

B

� �2

þ C00

C
� 1

r2

Bh

B

� �2

� Bhh

B
� Chh

C

( )#
; ð5Þ

�jqAB ¼ A0 _B
AB
�

_C 0

C
þ

_BB0

B2 þ
_CA0

CA
�

_B0

B
þ

_BC0

BC
; ð6Þ

0 ¼ Ah
_C

AC
�

_Bh

B
þ Bh

_B

B2 þ
Ah

_B
AB
þ

_BCh

BC
�

_Ch

C
; ð7Þ

j Pxx �
2
3
gr

� �
¼ 1

A2

_A _B
AB
þ

_A _C
AC
�

€B
B
�

_B _C
BC
�

€C
C

 !

þ 1
B2

A0B0

AB
þ A0C 0

AC
þ B0C 0

BC
þ 1

r
C 0

C
þ A0

A

� ��

þ 1
r2

Ahh

A
þ Chh

C
� AhBh

AB
� BhCh

BC
þ AhCh

AC

� ��
; ð8Þ

j Pyy�
2
3
gr

� �
¼ 1

A2

_A _C
AC
þ

_A _B
AB
�

€C
C
�

€B
B
�

_B _C
BC

 !

þ 1
B2

C 00

C
þA00

A
þA0C0

AC
�B0C 0

BC
�A0B0

AB
þ 1

r2

AhBh

AB
þAhCh

AC
þBhCh

BC

� �� �
; ð9Þ

36 M. Sharif, M.Z. Ul Haq Bhatti / Astroparticle Physics 56 (2014) 35–41



Download English Version:

https://daneshyari.com/en/article/1770606

Download Persian Version:

https://daneshyari.com/article/1770606

Daneshyari.com

https://daneshyari.com/en/article/1770606
https://daneshyari.com/article/1770606
https://daneshyari.com

