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a b s t r a c t

We present a detailed statistical treatment of the energy calibration of hybrid air-shower detectors, which

combine a surface detector array and a fluorescence detector, to obtain an unbiased estimate of the calibra-

tion curve. The special features of calibration data from air showers prevent unbiased results, if a standard

least-squares fit is applied to the problem. We develop a general maximum-likelihood approach, based on

the detailed statistical model, to solve the problem. Our approach was developed for the Pierre Auger Obser-

vatory, but the applied principles are general and can be transferred to other air-shower experiments, even

to the cross-calibration of other observables. Since our general likelihood function is expensive to compute,

we derive two approximations with significantly smaller computational cost. In the recent years both have

been used to calibrate data of the Pierre Auger Observatory. We demonstrate that these approximations intro-

duce negligible bias when they are applied to simulated toy experiments, which mimic realistic experimental

conditions.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

The latest generation of air-shower detectors, the Pierre Auger Ob-

servatory [1,2] and Telescope Array [3], are hybrid instruments. They

combine a fluorescence detector which measures the calorimetric en-

ergy of an air shower with a low duty cycle, and a surface detector

array measuring its size at ground with a full duty cycle.

The size of an air shower measured at the same point in its lon-

gitudinal development is proportional to a power of its energy [4].

Therefore, a calibration function returning an energy estimate for

a measured size can be found by analyzing a subset of coincident

events recorded in both detectors.

Fitting the calibration function to pairs of energy and size esti-

mates with a plain least-squares method yields biased results for

several reasons. Firstly, the least-squares approach requires the true

energy of the air shower to be known event-by-event, but the flu-

orescence detector only provides an energy estimate that fluctuates

around the true energy. Secondly, the energy spectrum of cosmic rays

is very steep so that most of the data are located near the lower en-

ergy threshold of the detector.

In the threshold region, the detector triggers are not fully efficient.

Upward fluctuations have a higher chance of passing the trigger and
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entering the data set than downward fluctuations. This creates an ac-

ceptance bias, so that the mean size of the accepted events does not

reflect the true mean size of the original sample.

Applying an energy cut with a minimum energy high enough to

avoid the threshold region altogether solves this problem, but it cre-

ates a new bias, caused by event migration over the new threshold

introduced by the cut. How the bias appears is illustrated in Fig. 1. A

superficial solution is to use a slanted cut, but determining the an-

gle under realistic conditions, where the resolutions vary with en-

ergy and size of the air shower, requires Monte-Carlo simulation of

the data [5].

We will show that a probabilistic approach solves the problem in

a consistent way. Based on the known properties of air-shower devel-

opment and the detectors, we construct a probability density model

for the experimental data. Maximizing the likelihood of the data un-

der this model then yields an asymptotically unbiased estimate of the

calibration curve.

2. Definition of variables

We use the variable S for the size of the air shower at the ground,

where it is observed by surface detector arrays. The size S depends

on the energy E of the air shower, mass A, and geometry a. We use

air-shower geometry as a general term for the orientation and impact

point of the air-shower axis. The size S is often obtained by fitting

an empirical lateral distribution function to the ground signals [6,7],
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Fig. 1. Sketch of the bias introduced by an energy cut in a least-squares fit. Shown

is an ideal calibration curve S∝E of the size S of an air shower against its energy E

(thick solid line). Both are given in arbitrary units E0 and S0. An energy cut is placed

at E = E0 (vertical dashed line). Measured estimates of E and S fluctuate around the

true values and spread events from points on the ideal calibration curve (black dots)

outwards. We regard the simplest case of uncorrelated Gaussian smearing, where the

iso-density contours of points scattered in this way form overlapping ellipses (only two

are shown). Events that migrate below the cut line, which affects the measured esti-

mates, are discarded (dotted part of ellipses). Surviving events (solid part of ellipses)

fluctuate more often below the ideal calibration curve since the arc is longer. A least-

squares fit wrongly compensates this by placing the calibration curve below the true

curve.

but other proxies work as well, such as the inferred total number of

muons at ground in very inclined showers [8].

Air showers with the same geometry a and energy E show a

fluctuating size S at the ground. These fluctuations [9–11] are caused

by random outcomes of the first few interactions of the air-shower

development and possibly from sampling a random mass A from

the mass-distribution of cosmic rays. The mass A is never exactly

known event-by-event and therefore the dependency S(A) adds to

the observed fluctuations of S. We call these fluctuations combined

intrinsic fluctuations.

Our aim is to find the function that yields the mean size S̄ of the

air shower, averaged over intrinsic fluctuations, as a function of its

energy E and geometry a. The energy dependence is usually modeled

well by a power law p0E p1 . Our approach does not depend on the ex-

act relationship and therefore we will just refer to p = (p0, p1, . . ., pn)
as the parameter vector of the function S̄(E, a, p) that describes the

energy dependence.

We mention the dependence of S̄ on the full air-shower geometry

a to treat the most general case. In practice, the dependency on a is

usually corrected before applying the energy calibration. The correc-

tion is either based on air-shower simulations [7,8], or inferred from

data, by demanding that the flux of cosmic rays looks isotropic in the

corrected size [12].

Inverting S̄(E) gives the energy calibration function, which pro-

vides an energy estimate ES based on a size S of the air shower. Care

must be taken, however, since the random fluctuations of the ob-

served size propagate into the energy estimate. Analyses based on

ES need to take into account, that ES randomly fluctuates around

the true energy E event-by-event, combined with the fact that true

energies follow a very steeply falling distribution. This makes it

more likely that a particular observed value of ES was generated

by an upward fluctuation of an air-shower of lower energy, than

by one with the same or higher energy. If the distribution of ener-

gies E is to be measured based on ES [6], unfolding methods can be

used [14,15].

In addition to the effects discussed before, detectors do not mea-

sure the energy E, size S, and geometry a of the air shower directly.

They provide estimates Ê, Ŝ, and â, that randomly fluctuate around

the true values. These fluctuations are caused by statistical sampling

of air-shower particles in the detector and by variations in the detec-

tor response. An experiment therefore provides a sample of tuples

(Êi, Ŝi, âi) as input for the analysis. We assume that an energy cut

Ê > Ecut is applied to this set which discards events with poor res-

olution in the threshold region of the detector.

To distinguish between functions and probability density func-

tions (pdfs) in this article, we use the semi-colon in pdfs to sepa-

rate the random variables from the dependent variables. For example,

f(x; p) is the probability density function f of the random variable x,

whose location and shape depends on p. When integrals over random

variables appear, we will not explicitly indicate the limits, except if

the integral does not cover the physical domain of the variable, for

example, [0, ∞) for E and S.

We will refer to the normal distributions frequently, and therefore

use the notation N (x;μ,σ) to indicate the density

N (x;μ,σ) = 1√
2πσ

exp

(
−1

2

(
x − μ

σ

)2
)

. (1)

In a fully rigorous treatment, we would have to use the truncated nor-

mal distribution in most places, where the domain of the variable x is

not the full real line. We generally assume that the experimental con-

ditions are such that μ/σ � 0, so that both distributions approach

each other.

3. Likelihood estimation of the calibration function

Our fitting method is based on the maximum-likelihood method

[13]. For un-binned continuous data, it states that an estimate of the

parameter vector p can be found by maximizing the joint pdf L of the

data under the model considered. We make a usual substitution and

maximize lnL instead of L,

lnL(p) =
∑

i

ln f (Êi, Ŝi, âi; p), (2)

which is equivalent but easier to handle. The density f (Ê, Ŝ, â; p)
models the data distribution as a function of p. We maximize this

sum with standard numerical algorithms to get an estimate p̂ of p.

If the data density was very high, working with a histogram of

the data would be more effective and the log-likelihood would take

a different form. Both approaches can also be combined, so that the

former is used in high density regions to speed up the computation

of the sum, an example of such a technique is given in Ref. [15].

The maximum-likelihood approach has a useful property that we

will exploit repeatedly. Finding the maximum of lnL to get the esti-

mate p̂ only involves the first derivative ∇p lnL. Similarly, comput-

ing the uncertainty estimate of p̂ only involves the second derivative.

Therefore, any constant factors ci with ∇pci = 0, that appear in the

evaluation of fi(p) = f (Êi, Ŝi, âi; p), can be dropped without chang-

ing these results,

lnL(p) =
∑

i

ln fi(p) =
∑

i

ln ci f ′
i (p)

=
∑

i

ln ci +
∑

i

ln f ′
i (p) ≡

∑
i

ln f ′
i (p). (3)

We will use this to avoid the explicit computation of such factors

wherever possible.

We now focus on the construction of f (Ê, Ŝ, â; p). The size func-

tion S̄(E, a, p) of the air-shower is at the heart of this pdf, the crucial

point is to model the random fluctuations of events around this mean.
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