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a b s t r a c t

Extensive air showers, induced by high energy cosmic rays impinging on the Earth’s atmosphere, produce
radio emission that is measured with the LOFAR radio telescope. As the emission comes from a finite dis-
tance of a few kilometers, the incident wavefront is non-planar. A spherical, conical or hyperbolic shape
of the wavefront has been proposed, but measurements of individual air showers have been inconclusive
so far. For a selected high-quality sample of 161 measured extensive air showers, we have reconstructed
the wavefront by measuring pulse arrival times to sub-nanosecond precision in 200 to 350 individual
antennas. For each measured air shower, we have fitted a conical, spherical, and hyperboloid shape to
the arrival times. The fit quality and a likelihood analysis show that a hyperboloid is the best parameter-
ization. Using a non-planar wavefront shape gives an improved angular resolution, when reconstructing
the shower arrival direction. Furthermore, a dependence of the wavefront shape on the shower geometry
can be seen. This suggests that it will be possible to use a wavefront shape analysis to get an additional
handle on the atmospheric depth of the shower maximum, which is sensitive to the mass of the primary
particle.

� 2014 Elsevier B.V. All rights reserved.

1. Introduction

A high-energy cosmic ray that enters the atmosphere of the
Earth will interact with a nucleus of an atmospheric molecule. This
interaction produces secondary particles, which in turn interact,
thereby creating a cascade of particles: an extensive air shower.
The origin of these cosmic rays and their mass composition are
not fully known.

Due to the high incident energy of the cosmic ray, the bulk of
the secondary particles propagate downward with a high gamma
factor. As this air shower passes through the atmosphere and the
Earth’s magnetic field, it emits radiation, which can be measured
by antennas on the ground in a broad range of radio frequencies
(MHz–GHz) [1–3]. For a review of recent developments in the field
see [4]. The measured radiation is the result of several emission
processes [5], and is further influenced by the propagation of the
radiation in the atmosphere with non-unity index of refraction
[6]. Dominant in the frequency range considered in this study is
the interaction in the geomagnetic field [7,8,3,9]. An overview of
the current understanding of the detailed emission mechanisms
can be found in [10].

The radio signal reaches the ground as a coherent broadband
pulse, with a duration on the order of 10 to 100 ns (depending
on the position in the air shower geometry). As the radio emission
originates effectively from a few kilometers in altitude, the inci-
dent wavefront as measured on the ground is non-planar. Geomet-
rical considerations suggest that the amount of curvature and the
shape of the wavefront depend on the height of the emission
region, suggesting a relation to the depth of shower maximum,
Xmax. The depth of shower maximum is related to the primary par-
ticle type.

Assuming a point source would result in a spherical wavefront
shape, which is used for analysis of LOPES data [11]. It is argued in
[12] that the actual shape of the wavefront is not spherical, but
rather conical, as the emission is not point-like but stretched along
the shower axis. In a recent further refinement of this study, based
on CoREAS simulations, evidence is found for a hyperbolic wave-
front shape (spherical near the shower axis, and conical further
out) [13]. Hints for this shape are also found in the air shower data-
set collected by the LOPES experiment [14]. However, due to high
ambient noise levels, the timing precision of these measurements
did not allow for a distinction between spherical, hyperbolical
and conical shapes on a shower-by-shower basis, and only statisti-
cally was a hyperbolic wavefront shape favored.

We use the LOFAR radio telescope [15] to measure radio emis-
sion from air showers, in order to measure wavefront shapes for

individual showers. LOFAR consists of an array of two types of
antennas: the low-band antennas (LBA) sensitive to frequencies
in a bandwidth of 10–90 MHz, and the high-band antennas
(HBA) operating in the 110–240 MHz range. While air showers
have been measured in both frequency ranges [16,17], this study
only uses data gathered with the 10–90 MHz low-band antennas.
A combination of analog and digital filters limits the effective
bandwidth to 30–80 MHz which has the least amount of radio fre-
quency interference. For detecting cosmic rays we use the (most
densely instrumented) inner region of LOFAR, the layout of which
is depicted in Fig. 1. LOFAR is equipped with ring buffers (called
Transient Buffer Boards) that can store the raw-voltage signals of
each antenna for up to 5 s. These are used for cosmic-ray observa-
tions as described in [16].

Inside the inner core of LOFAR, which is a circular area of 320 m
diameter, an array of 20 scintillator detectors (LORA) has been set
up [18]. This air shower array is used to trigger a read-out of the
Transient Buffer Boards at the moment an air shower is detected.
The buffer boards provide a raw voltage time series for every
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Fig. 1. Layout of the innermost 8 stations of LOFAR. For each station the outer ring
of low band radio antennas (black plus symbols), used for the analysis in this paper,
are depicted. Located with the innermost six stations are the particle detectors
(gray squares) used to trigger on extensive air showers.
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