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a b s t r a c t

We consider a particular effect which can be expected in scenarios of deviations from special relativity
induced by Planckian physics: the loss of additivity in the total energy of a system of particles. We argue
about the necessity to introduce a length scale to control the effects of non-additivity for macroscopic
objects and consider white dwarfs as an appropriate laboratory to test this kind of new physics. We study
the sensitivity of the mass-radius relation of the Chandrasekhar model to these corrections by comparing
the output of a simple phenomenological model to observational data of white dwarfs.

� 2014 Elsevier B.V. All rights reserved.

1. Introduction

The relativistic energy–momentum dispersion relation of parti-
cles, E2 �~p2 ¼ m2, is involved in every particle physics measure-
ment, and, as so, it has been tested in countless occasions. This
has been done with large precision however only in the relatively
‘‘low-energy’’ regime we are familiar with (energies at or below the
Fermi scale, of O � 100 GeV). In recent times, astrophysics has also
offered the opportunity to test this relation at much higher ener-
gies [1]. In fact, the loss of Lorentz invariance is a rather generic
feature of quantum gravity developments [2], so that modifications
to this dispersion relation are expected at energies close to the
Planck mass MP. However, the presence of amplifying mechanisms,
such as threshold effects [3] or galactic distances of propagation
[4], as well as high-precision experiments [5] makes possible to
consider a quantum gravity phenomenology at energies much low-
er than MP [6].

In order to test this relation, it is quite common to assume cor-
rections of order 1=K as the dominant effect if the energies in-
volved are much smaller than the ultraviolet scale K which
controls the new physics beyond special relativity (SR). In a quan-
tum gravity context, one would take K ¼ MP, but the idea of a mod-
ified dispersion relation (MDR) is more general than that. A typical
parametrization in which rotational invariance is maintained and

the corrections can be expanded in powers of the momenta and
the inverse of K is

E2 �~p2 þ a1

K
E3 þ a2

K
E~p2 ¼ m2; ð1Þ

where a1 and a2 are two coefficients of order 1 (that is, K signals the
energy scale at which the corrections are of order 1).

Of course, energy is not an observer-invariant quantity, so that
when one is comparing the typical ‘‘energy’’ scale of an experiment
with the scale K, one is either assuming a particular (laboratory)
frame, or considering an invariant quantity (such as the invariant
mass or the energy in the center of mass system in special relativ-
ity). In the case of a violation of Lorentz invariance, the only possi-
bility is to consider a particular, privileged, system of reference [7].
However, it is also possible to go beyond SR by considering a defor-
mation of Lorentz invariance. This is the case of doubly special rel-
ativity (DSR) models [8]. The phenomenology of Lorentz invariance
violation (LIV) and DSR models are in general quite different, since
the existence of a relativistic principle in the latter forces to add to
a MDR also a modification in the composition laws (the sum of the
energies and momenta) of a multiparticle system. A general
parametrization of modified composition laws (MCL) at order
1=K is

E1 � E2 ¼ E1 þ E2 þ
b1

K
E1E2 þ

b2

K
~p1 �~p2 ð2Þ

~p1 �~p2 ¼~p1 þ~p2 þ
c1

K
E1~p2 þ

c2

K
~p1E2 þ

c3

K
~p1 �~p2: ð3Þ

again with coefficients ðbi; ciÞ of order 1.
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The idea of MCL can also be considered in more general contexts
than those of DSR models. It can be shown [9] that MCL, that is,
nonlinear corrections to additive energy–momentum composition
laws, cause the locality property of interactions between particles
to be lost for a general observer. This in fact agrees with the notion
of ‘‘relative locality’’ that has recently been proposed in terms of a
geometric interpretation of the departures from SR kinematics
[10]. In particular, both a MDR and MCL may be present as signals
of a LIV. What the existence of a relativity principle makes is to
establish specific relations between the coefficients appearing in
the MDR and the MCL. In fact, as it is shown in Ref. [11] the b
and c coefficients of the MCL determine the a coefficients in the
MDR in a relativistic theory beyond SR:

a1 ¼ �b1 a2 ¼ c1 þ c2 � b2: ð4Þ

Since the idea of MCL is very general, compulsory in DSR sce-
narios and possible in LIV scenarios, we want to address in this pa-
per the physical implications of an energy non-additivity. Naively
one would think that the best place to look for signals of an energy
non-additivity would be systems of a large number of particles;
however, for a sufficiently large system, the nonlinear terms cease
to be small corrections contradicting, for example, the well-known
physics of macroscopic objects. This difficulty is related with the
general question of how the correction to SR in the microscopic do-
main affects macroscopic physics, which in the DSR context, where
MCL are a necessary ingredient of the models, it is known as the
‘‘soccer-ball problem’’. This problem by itself deserves a general
discussion of the different alternatives to solve it and a comparison
of the required assumptions and their plausibility [12]. We will
just note here that if gravity or the structure of space–time is in
the origin of this non-additivity, then it is natural to think that
the key for these corrections to be large should be not a large
number of particles, but a large number of particles which are close
enough. That is, the relevant variable controlling the size of the
non-additivity should be the density of the system. Incorporating
this idea would immediately provide a possible solution to the
soccer-ball problem, since the effects would be important not just
for macroscopic objects, but for objects of high enough density, as
it was already remarked in a different context but with similar
implications by Ref. [13]. The requirement of a high energy density
is in contrast with other proposals to observe effects of the quan-
tization of space–time in macroscopic objects [14], which have
been questioned by the results of Ref. [15].

In Section 2 of the paper we will make the previous idea expli-
cit, by introducing the notion of a ‘‘coherence length’’ for the non-
additivity corrections. Then we will explore the possible systems
where these corrections could be tested, and conclude that white
dwarfs are a natural candidate. In fact modifications in white dwarf
physics owing to departures of Lorentz invariance have been con-
sidered previously [16–18]. We will review in Section 3 the main
conclusions of these works and will remark their differences with
the ideas here explored. In Section 4 we will present a phenomeno-
logical model including non-additivity corrections for the energy of
a white dwarf and will calculate how the mass-radius relation that
can be extracted from the Chandrasekhar model gets modified. A
comparison with experimental data to obtain bounds on the
parameters of the model (essentially, the coherence length) will
be done in Section 5, showing the sensitivity of white dwarfs to
this new physics. Finally, we will present our conclusions in
Section 6.

2. Energy non-additivity: coherence length

Our aim is to explore possible observational consequences of
new physics parameterized at a kinematical level by a modification

(non-additivity) of the energy composition law. As explained in the
Introduction, this non-additivity emerges naturally in specific sce-
narios related to quantum gravity effects, but we will just consider
it as a phenomenological model for the new physics, without
entering into the physical mechanisms at work. A departure from
locality [9] or a hidden effective interaction as a remnant of a quan-
tum structure of space–time are examples of possible ideas related
to the origin of an energy non-additivity.

Let us assume that the total energy of a two particle system is
given by Eq. (2), which contains nonlinear corrections to the simple
addition of energies of order 1/K. K is a high (ultraviolet) energy
scale which may be as large as the Planck energy scale if the new
physics we are considering is a remnant of quantum gravity. Since
we will never have direct access to particles with energies of the
order of the Planck energy scale, in order to have observable con-
sequences of the non-additivity we have to rely on the amplifica-
tion of the kinematic modification that happens in a many
particle system, for which Eq. (2) is generalized to (see Ref. [11]):

X
�

Ei �
X

i

Ei þ
X
i<j

b1

K
EiEj þ

b2

K
~pi �~pj

� �
: ð5Þ

Let us think, for the sake of simplicity, of an object made of N
particles with the same energy E. Then the total energy ET will
be deformed to1

ET ¼ NEþ b1

K
N2 � N

2

 !
E2 ¼ ER þ

b1

K
N � 1

2N
E2

R; ð6Þ

where the sum of the contributions ER ¼
P

iEi ¼ NE could be, in
principle, much larger than the characteristic energy scale of the
deformation K. Of course this rough description of macroscopic
manifestation of the deformed composition law for momenta (soc-
cer-ball problem) is in contradiction with many observations, and
should consequently be ruled out. In this paper we will consider a
simple way of including a restriction on the non-additivity effects:
we recognize this phenomenon to be a coherence process so that it
should be confined within a certain coherence length.

It is clear that two particles that are not correlated in any way,
and far apart from each other, are really independent systems so
that the total energy will be just the sum of their energies, with
no nonlinear corrections. Therefore one can expect that the modi-
fication of the energy composition law will be limited to particles
separated by a distance smaller than the coherence length ‘c . We
do not know the physical origin of this restriction on the non-
additive corrections and how this length scale ‘c emerges. At the
classical level, the possible effective interaction associated to the
quantum nature of space–time will take place in a region of Planc-
kian size. This suggests to attribute the energy non-additivity to
the quantum ‘‘delocalization’’ of particles, which might lead to a
coherence length much larger than the Planck length. In this sense,
an interesting possibility is that the non trivial composition law for
energies were a consequence of the superposition of different wave
functions in a given quantum system; the coherence length would
then define the range of this superposition. In any case, it seems
clear that this length must be a microscopic scale, because it
should provide a solution to the soccer-ball problem, but it may
well depend on the properties of the system under consideration,
such as the type of particles, whether or not they are entangled,
or on their quantum mechanical properties, such as their de Broglie
or Compton wavelengths.

Recent results in Lie-algebra noncommutativity models [15]
suggest that macroscopic objects are blind to some effects of the
quantization of space–time, because of a suppression factor of

1 To illustrate the point we will use only the b1-term of Eq. (5).
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