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a b s t r a c t

In this manuscript we present a new approach for the numerical solution of the Galactic Cosmic Ray
propagation problem. We introduce a method using advanced contemporary numerical algorithms while
retaining the general complexity of other established codes. In this paper we present the underlying
numerical scheme in conjunction with tests showing the correctness of the scheme. Finally we show
the solution of a first example propagation problem using the new code to show its applicability to Galac-
tic Cosmic Ray propagation.

� 2014 Elsevier B.V. All rights reserved.

1. Introduction

The Galactic Cosmic Ray propagation problem, i.e., the question
how Cosmic Rays are transported from their sources to arbitrary
locations in the Galaxy, becomes ever more relevant with recent
advances in observational techniques. Such observations yield
the flux of primary Cosmic Rays (see, e.g., [9,12,2,3]) or also of sec-
ondaries at Earth. For neutral secondary particles also directional
information can be extracted from the data (see, e.g., [1]). Together
with a physical description of the transport process of Cosmic Rays
these data should allow a better understanding of the physics in-
volved in Cosmic Ray transport.

The transport of Galactic Cosmic Rays is a diffusion-loss prob-
lem (see [15]). That is we have to find a solution of the partial dif-
ferential equation:
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where the first term on the right hand side represents the sources of
Cosmic Ray species w, the second term gives the spatial diffusion,
the third represents the energy losses and the fourth term gives

losses by fragmentation and radioactive decay for the current Cos-
mic Ray species.

This partial differential equation has been solved using different
numerical codes or analytical approximations or a mixture of both.
Use of analytical solutions or approximations within a numerical
code decreases the numerical cost to find a solution and gives a
more direct idea of the underlying dependence of the solution on
different parameters. Analytical methods, however, are not suited
to investigate the Cosmic Ray propagation problem in a realistic
environment, i.e., an environment, where all functions that deter-
mine the final outcome of Eq. (1) are allowed to vary arbitrarily
in configuration- and momentum-space.

With the increasing precision of Galactic Cosmic Ray measure-
ments an analytical approach is far from being able to explain the
fine details in the measurements. Also a discussion of >1 TeV Cos-
mic Rays would necessitate consideration of the Cosmic Ray trans-
port from individual sources. Therefore we will only discuss fully
numerical methods in the paper, thus also omitting references to
such numerical codes like USINE (see [11]) that use analytical
approximations to improve the performance of the code. Such
codes aim at finding the best values for the variables in Eq. (1)
which, however, are assumed constant in the space.

For the full numerical solution of the Galactic Cosmic Ray prop-
agation problem there are mainly two publicly available codes:
GALPROP (see [14]) and DRAGON (see [4]). GALPROP is a very sophisti-
cated framework that tries to include all relevant physics for the
propagation problem with a high complexity. The DRAGON code
emerged from an earlier GALPROP version and has been continuously
enhanced since. In particular DRAGON allows a significantly more
complex description for some of the transport parameters, like
e.g. fully anisotropic spatial diffusion, than currently available in
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GALPROP – see, e.g., [6], where also the effort in establishing the tran-
sition to spatially three-dimensional simulations is shown. There
are indeed some issues with the representation of the physical
parameters in GALPROP as is discussed in [8]. This will not be subject
of the present paper. Here we rather diagnose the problem that
there was far less attention directed to the numerical solver in GAL-

PROP than to other aspects of the code. This led to the fact that the
solver is rather outdated regarding the numerical methods
employed.

Consequently we will discuss the implementation of an up to
date numerical solver within a code that can adopt the same trans-
port parameters as GALPROP, using initialisation via GALDEF files. In
Section 2 we describe the new numerical scheme. Corresponding
tests will be discussed in Section 3 and we will show a typical
example of a Galactic Cosmic Ray propagation problem in Section 4.
Finally we will conclude with an outlook on ongoing development
of the code.

2. A new numerical approach

As mentioned in the introduction the presently most widely
used code for the solution of the Galactic Cosmic Ray transport
problem is GALPROP. This code was introduced some 20 years ago
(see [17]) where the numerical solver has only been marginal al-
tered since that time.

The solution in the GALPROP code is computed from a Crank–
Nicolson discretisation of the partial differential equation Eq. (1),
where the authors use operator splitting by which they can apply
the updating scheme to each spatial or momentum dimension sep-
arately. To avoid the problem of having to solve a prohibitively
large amount of timesteps GALPROP additionally uses a procedure
where a range of different timestep sizes is used for the time inte-
gration beginning with very large steps and ending at a user-spec-
ified smallest timestep. By this the solution can reach a steady
state faster than for a constant timestep method (for further details
see the appendix of [13]).

This solution scheme, however, has some severe shortcomings.
The first issue is that the numerical integration scheme depends on
parameters to be set by the user. Such parameters are, e.g., the
largest and smallest timestep, and the number each timestep size
is supposed to be used for the integration. The final solution of a
simulation then depends on the correct choice of these parameters.
While the standard parameters might suffice for the standard
GALPROP runs a significant change in the configuration might lead to
the necessity to come up with a corresponding new set of integra-
tion parameters. To investigate the steady state solution that has
been found GALPROP offers some diagnostic tools. These, however,
have explicitly to be administered and also interpreted by the user.
Therefore, when finding new time-integration parameters, several
simulations will have to be done with different parameters until it
is certain that a steady state is reached from a comparison of the
results.

Most of these issues arise from the fact that a time integration
scheme is used where a steady state solution is searched for.
Therefore, we are using two different approaches depending on
the question whether the parameters in Eq. (1) are time dependent
or not. In the former case the solution is obtained by integrating
Eq. (1) from some initial conditions up to the time of interest.
Whenever the source term sð~r; p; tÞ, the diffusion tensor D, the
momentum loss rate _p and the catastrophic loss times s are time
independent we are using a solver that yields a steady state solu-
tion without any integration in time instead. In this section we will
discuss both approaches – keeping in mind that it is also a viable
option to use a steady state solution to compute an initial condi-
tion for the time dependent problem.

Looking at the transport equation Eq. (1) shows that when re-
acceleration is not taken into account we only have to deal with
first order derivatives in momentum space. If additionally the en-
ergy changes universally occur in the same direction, the momen-
tum space transport problem becomes particularly simple. This
motivates the choice of a dedicated solver. Even though this might
seem to be a special case it is a very common application in Galac-
tic Cosmic Ray propagation simulations. By comparison with the
more general solver we will later find that the solver adapted to
this particular case is indeed more efficient than the general one.
In the following we will refer to the different solvers as the re-
acceleration scheme for the general solver and the energy-loss
scheme for the special case without re-acceleration. We will intro-
duce adapted solvers for both situations. We start by discussing the
steady state problem.

2.1. The steady state problem

Looking for a steady state solution of Eq. (1) means that we are
looking for a solution where the time-derivative goes to zero.
Therefore a popular option is to do a time integration instead
and integrate until a steady state solution is reached, i.e. until
the solution does not change anymore. Depending on the choice
of variables in Eq. (1) this, however, can take quite some time
and also a good criterion is needed to check whether the code
has found a steady state solution. In particular, one has to ask
how small a change would have to be in order to indicate such a
steady state. This is a particular issue for Cosmic Ray transport
were the solution varies over orders in magnitude especially as a
function of energy.

Here we are therefore using a different approach, where we
explicitly make use of the fact that the time derivative is supposed
to be zero. That is we are solving the equation
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instead. For this equation it is not possible to use dimensional
splitting anymore like, e.g., employed in the GALPROP code. Solving
Eq. (3) requires solving the whole equation at once. To find a
numerical solution we need to discretise this equation on a grid
– here we use the same approach as in GALPROP, i.e., a linear spatial
grid and a logarithmic grid in momentum space. Using such a dis-
cretisation the above PDE is transformed into a coupled system of
algebraic equations. In 1D such a system can directly be solved by
inverting the corresponding matrix (that motivates the dimen-
sional splitting used, e.g., in GALPROP), which usually is just a tridi-
agonal matrix. In the present case with three spatial and one
momentum dimension, however, a direct solution is not efficient
to compute anymore.

Therefore we are using an iterative method that relies heavily
on the application of multigrid methods, which turned out to lead
to excellent convergence in this case. As indicated above, we will
now discuss two different implementations of the numerical
solver.

2.2. Energy-loss scheme

Neglecting re-acceleration and provided that energy losses al-
ways dominate gains by adiabatic energy changes it is possible
to derive an extremely efficient solution scheme for the Cosmic
Ray transport problem. Due to the fact that spatial advection can
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