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a b s t r a c t

We calculate the first relativistic corrections to the Kompaneets equation for the evolution of the photon
frequency distribution brought about by Compton scattering. The Lorentz invariant Boltzmann equation
for electron–photon scattering is first specialized to isotropic electron and photon distributions, the
squared scattering amplitude and the energy–momentum conserving delta function are each expanded
to order v4/c4, averages over the directions of the electron and photon momenta are then carried out,
and finally an integration over the photon energy yields our Fokker–Planck equation. The Kompaneets
equation, which involves only first- and second-order derivatives with respect to the photon energy,
results from the order v2/c2 terms, while the first relativistic corrections of order v4/c4 introduce third-
and fourth-order derivatives. We emphasize that our result holds when neither the electrons nor the pho-
tons are in thermal equilibrium; two effective temperatures characterize a general, non-thermal electron
distribution. When the electrons are in thermal equilibrium our relativistic Fokker–Planck equation is in
complete agreement with the most recent published results, but we both disagree with older work.

� 2012 Elsevier B.V. All rights reserved.

1. Introduction

The Kompaneets [1] equation,
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describes the scattering of unpolarized, low energy photons of fre-
quency x on a dilute distribution of non-relativistic electrons when
all the particles — photons and electrons — are distributed isotrop-
ically in their momenta. The non-relativistic total photon–electron
cross section is the Thomson cross section rT. The electron number
density and mass are denoted by ne and me. The photon phase space
distribution f(t,x) is normalized such that the number nc of photons
per unit volume is given by

ncðtÞ ¼ 2
Z ðd3kÞ
ð2pÞ3

f ðt;xÞ; ð1:2Þ

in which the prefactor 2 counts the number of photon polarization
states and k is the photon wave-number vector with jkjc = x. If the
electrons are in thermal equilibrium described by a Maxwell–
Boltzmann distribution, then T is the temperature (in energy units)
Te of this thermal distribution. However, the Kompaneets equation
(1.1) holds for any isotropic distribution of electron momenta with

T defined to be 2/3 of the average energy in this distribution [2]. For
photons with a Planck distribution,

f ðt;xÞ ! f ð0ÞðxÞ ¼ 1
expf�hx=Tcg � 1

: ð1:3Þ

The terms in the curly braces in the Kompaneets equation (1.1) van-
ish when Tc = T. In particular, if T = Tc = Te, there is a time-indepen-
dent photon distribution in thermal equilibrium with the
electrons.1

Our purpose here is to examine the first relativistic corrections
to the Kompaneets equation. These corrections have been previ-
ously computed by Challinor and Lasenby (C&L) [3] for the case
in which the electrons are in a thermal distribution. Using the
method of C&L, Itoh et al. [4] carried out the expansion to a much
higher order in v/c. Subsequently, Sazonov and Sunyaev [5] con-
firmed the previous work of Challinor and Lasenby. Here we use
a method that is quite different from that employed by C&L, a
method that does not require that the electrons be in thermal equi-
librium. Moreover, this method explicitly exhibits the order of v/c
in every term and thus provides a straightforward evaluation of the
correct v2/c2 corrections to the Kompaneets equation. Although the
structure of our result is quite different from that found by C&L, we
agree with C&L in the number of higher-order derivatives with
respect to the photon frequency x which must supplement the
Kompaneets equation to correctly account for the relativistic
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1 Since Compton scattering preserves the photon number, the collision term on the
right-hand side of Eq. (1.1) also vanishes for a general Bose–Einstein distribution of
massless particles at temperature T, f(t,x) ? f(a)(x) = [exp{(⁄x/T) � a} � 1]�1.
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corrections. Such higher-order derivative terms are missing from
the ad hoc treatments of Cooper [6] and of Prasad et al. [7]. These
authors assume (incorrectly) that the relativistic corrections may
be accounted for by simply replacing the factor x4 that stands just
before the curly braces in Eq. (1.1) by a function a(x,T) which is
determined so as to give the rate of change of the photon energy
density including the first relativistic corrections. We compute
both the rate of energy exchange between the photons and elec-
trons and the Sunyaev–Zel’dovich effect [9–11] which follow from
the relativistically corrected Kompaneets equation. Including the
first relativistic corrections, our results entail two effective temper-
atures Teff1 and Teff2 which are defined by energy moments of the
electron phase-space distribution. When the electron distribution
is restricted to a thermal, relativistic Maxwell–Boltzmann distribu-
tion at temperature T, Teff1 = Teff2 = T and we find, after some alge-
bra, that our results that have a completely different structure are,
in fact, in complete agreement with those of C&L. Moreover, the
rate of energy exchange that we compute (also written down by
C&L) agrees with that found earlier by Woodward [8].

Our presentation is organized as follows: After describing the
general method we use in Section 2, we then outline the calcula-
tion in Section 3 using the results of several Appendices. Finally,
our results are shown in Section 4: Section 4.1 presents our general
result, Section 4.2 gives its restriction to the case in which the pho-
tons are in thermal equilibrium at temperature Tc, Section 4.3 de-
rives the rate of energy transport between photons at temperature
Tc and the electrons in a general distribution, and finally, in Section
4.4 the Sunyaev–Zel’dovich effect for non-thermal electrons with
the first relativistic correction is briefly described.

2. Relativistic Boltzmann equation for isotropic scattering

We start from the Lorentz invariant form of the Boltzmann
equation for electron–photon scattering:
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ð2pÞ3
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Here we revert to units in which ⁄ = 1 = c, but we shall return to
conventional units when we write the final result. The left-hand
side of the equation involves the relativistic scalar k@ = x(@/
@t) + k � r. We are assuming that the electrons and photons are
not polarized. Hence jTj2 denotes the square of the Lorentz invariant
scattering amplitude that is summed over the initial and final elec-
tron and photon spins. It is divided by the initial electron spin
weight ge = 2 so as to describe the average scattering from an ini-
tially unpolarized ensemble of electrons. It is divided by the square
of the photon spin weight g2

c ¼ 4 because initially there is an unpo-
larized mixture and finally the scattering is into the scalar density
f(x,k) that describes a typical photon (with the factor gc = 2 needed
to provide the photon number count in Eq. (1.2)). The function
g(x,p) is the electron phase space density. We choose our Lorentz
metric to have signature (�+++) so that t = x0 = �x0 while for the
spatial coordinates xk = xk.

We now specialize to the isotropic case of interest where
f(x,k) ? f(t,x) and g(x,p) ? g(t,E), with the electron number den-
sity given by

ne ¼ 2
Z ðd3pÞ
ð2pÞ3

gðt; EÞ: ð2:2Þ

The integration variables p and p0 in Eq. (2.1) are dummy variables.
We shall make the interchange p M p0 in the first set of terms in Eq.
(2.1) so as to have a common factor of g(t,E) for the two ‘scattering

in to’ and ‘scattering out of’ terms. To keep a convenient form, we
shall also use the detailed balance relation

Tðp0; k0; p; kÞ
�� ��2 ¼ Tðp; k; p0; k0Þ

�� ��2 ð2:3Þ

for this first term in Eq. (2.1). Finally, we note that the p0 integration
is best performed using

ðd3p0Þ
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against the four-dimensional delta function which now replaces

p0 ¼ pþ k� k0 ð2:5Þ

giving

p02 þm2
e ¼ 2pðk� k0Þ � 2kk0: ð2:6Þ

In this fashion, we obtain
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in which the four-momentum p0 in jT(p0,k;p,k0)j2 is determined by
Eq. (2.5).

The angular part of the integrations over p and k0 pick out the
completely rotationally invariant part of the integrand. Thus, with
angular brackets denoting the average over all the orientations of
the vectors within it, we may make the replacement

dð2pðk� k0Þ � 2kk0ÞjTðp0; k0; p; kÞj2

! dð2pðk� k0Þ � 2kk0ÞjTðp0; k0; p; kÞj2
D E

� sðp;x0;xÞ: ð2:8Þ

In view of these remarks, we may write Eq. (2.7) as
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with

Fðt;x; pÞ ¼ x
2p

Z 1

0
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For the evaluation of Eq. (2.10) it is convenient to separate the
weight that appears there into symmetric and antisymmetric
parts:

sðp; x0;xÞ ¼ sSðp;x0;xÞ þ sAðp;x0;xÞ ð2:11Þ

with

sSðp;x;x0Þ ¼ þsSðp;x0;xÞ ð2:12Þ

and

sAðp;x;x0Þ ¼ �sAðp; x0;xÞ: ð2:13Þ

With this decomposition, Eq. (2.10) becomes

Fðt;x; pÞ ¼ x
2p

Z 1
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L.S. Brown, D.L. Preston / Astroparticle Physics 35 (2012) 742–748 743



Download English Version:

https://daneshyari.com/en/article/1770840

Download Persian Version:

https://daneshyari.com/article/1770840

Daneshyari.com

https://daneshyari.com/en/article/1770840
https://daneshyari.com/article/1770840
https://daneshyari.com

