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a b s t r a c t

A two-fluid dark matter model, in which dark matter is represented as a two-component fluid thermo-
dynamic system, without interaction between the constituent particles of different species, and with
each distinct component having a different four-velocity, was recently proposed in Harko and Lobo [T.
Harko, F.S.N. Lobo, Phys. Rev. D 83 (2011) 124051]. In the present paper we further investigate the
two-fluid dark matter model, by assuming that the two dark matter components are pressureless,
non-comoving fluids. For this particular choice of equations of state the dark matter distribution can
be described as a single anisotropic fluid, with vanishing tangential pressure, and non-zero radial pres-
sure. We investigate the properties of this model in the region of constant velocity galactic rotation
curves, where the dynamics of the test particles is essentially determined by the dark matter only. By
solving the general relativistic equations of mass continuity and hydrostatic equilibrium we obtain the
geometric and physical parameters of the dark matter halos in the constant velocity region in an exact
analytical form. The general, radial coordinate dependent, functional relationship between the energy
density and the radial pressure is also determined, and it differs from a simple barotropic equation of
state.

� 2012 Elsevier B.V. All rights reserved.

1. Introduction

The Concordance Cosmological Model, usually referred to as the
K cold dark matter (KCDM) model, has proved to be very success-
ful in explaining cosmological observations across a wide rage of
length scales, from the cosmic microwave background (CMB)
anisotropy to the Lyman-a forest [1,2]. In this model, nonbaryonic
collisionless cold dark matter makes up to 23% of the total mass
content of the Universe. In the KCDM model, dark matter consists
of cold neutral weakly interacting massive particles, beyond those
existing in the Standard Model of Particle Physics. However, up to
now no dark matter candidates have been detected in particle
accelerators or in direct and indirect searches. Many particles have
been proposed as possible candidates for dark matter, the most
popular ones being the Weakly Interacting Massive Particles
(WIMP) and the axions (for a review of the particle physics aspects
of dark matter see [3]). The interaction cross section of dark matter
particles with normal baryonic matter is assumed to be extremely
small. However, it is expected to be non-zero, and therefore the di-
rect experimental detection of dark matter particles may be possi-
ble. Superheavy particles, with mass P1010 GeV, have also been
proposed as dark matter candidates. But in this case observational
results show that these particles must either interact weakly with

normal matter, or they must have masses above 1015 GeV [4].
Scalar field models, or other long range coherent fields coupled
to gravity have also been proposed to model galactic dark matter
[5–21]. The possibility that dark matter could be described by a
fluid with non-zero effective pressure was also investigated
[22,23]. In particular, it was assumed in [24] that equation of state
of the dark matter halos is polytropic. The fit with a polytropic dark
halo improves the velocity dispersion profiles. The possibility that
the galactic dynamics of massive test particles may be understood
without the need for dark matter was explored in the context of
modified theories of gravity in [25–32].

On galactic scales observational data seem to disagree with the
KCDM model predictions. High resolution N-body simulations
have shown that the predicted number of subhalos is an order of
magnitude larger than what has been observed [33]. Another dis-
crepancy arises when comparing the density profiles of dark halos
predicted in simulations with those derived from observations of
dwarf spheroidal (dSph) galaxies and Low Surface Brightness
galaxies (LSBs). N-body simulations predict an universal cuspy
density profile [34,35],

qNFWðrÞ �
qs

ðr=rsÞð1þ r=rsÞ2
; ð1Þ

where rs is a scale radius and qs is a characteristic density. On the
other hand observations based on high-resolution rotation curves
show, instead, that the actual distribution of dark matter is much
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shallower than the above, thus indicating that a cored halo is pre-
ferred in an important fraction of low-mass galaxies [36],

qBðrÞ �
q0r3

0

ðr þ r0Þðr2 þ r2
0Þ
; ð2Þ

where r0 is the core radius and q0 is the central density. The
observational Burkert density profile, given by Eq. (2), resembles
an isothermal profile in the inner regions, i.e., r� r0, predicts a
finite central density, q0, and leads to a mass profile that diverges
logarithmically for increasing r, which is consistent with cosmolog-
ical cold dark matter predictions [34,35].

These discrepancies between theoretical predictions and obser-
vations might be overcome by considering other alternative dark
matter models. The possibility that dark matter is a mixture of
two non-interacting perfect fluids, with different four-velocities
and thermodynamic parameters, was proposed recently in [37].
By introducing a rotation of the four-velocity vectors the two-fluid
model can be reduced to an effective single anisotropic fluid model,
with distinct radial and tangential pressures [38–40]. By assuming
a non-relativistic kinetic model for the dark matter particles, the
density profile and the tangential velocity of the dark matter
mixture have been obtained by numerically integrating the
gravitational field equations. The cosmological implications of
the model have also been briefly analyzed, and it was shown that
the anisotropic two-fluid model isotropizes in the large time limit.
Two fluid dust models have also been considered in a general
relativistic framework in [41,42].

It is the purpose of the present paper to further investigate the
idea proposed in [37], by considering the specific case of two,
non-interacting, pressureless dark matter fluids. For this configura-
tion the model reduces to a single anisotropic fluid, with vanishing
tangential pressure. We investigate the properties of this model in
the region of constant galactic velocity rotation curves, where the
solution of the basic equations can be obtained in an exact analyt-
ical form. Thus, the radial coordinate dependence of all relevant
geometric and physical parameters of the dark matter halos
is explicitly determined. In particular, we obtain the general,
r-dependent, functional relationship between the energy density
and the radial pressure of the dark matter, which differs from the
simple barotropic equation of state previously considered in the
physical literature [22–24].

The present paper is organized as follows. The two-fluid model
of the dark matter halos is briefly reviewed in Section 2. The gen-
eral relativistic structure equations for anisotropic fluids are writ-
ten down in Section 3, and the tangential velocity of test particles
in stable circular orbits is obtained as a function of the geometric
metric tensor. The general solution of the gravitational field
equations in the constant velocity region of the dark matter halos
is obtained in Section 4. We discuss and conclude our results in
Section 5. In the present paper we use the natural system of units
with c ¼ G ¼ �h ¼ 1.

2. Dark matter as a mixture of two perfect fluids

We start our study of dark matter by assuming that it consists of
a mixture of two perfect fluids, with energy densities and pressures
q1, p1 and q2, p2, respectively, and with four velocities Ul and Wl,
respectively. The fluid is described by the total energy–momentum
tensor Tlm, given by

Tlm ¼ ðq1 þ p1ÞU
lUm � p1glm þ ðq2 þ p2ÞW

lWm � p2glm: ð3Þ

The four-velocities are normalized according to UlUl = 1 and
WlWl = 1, respectively. The study of the physical systems described
by an energy–momentum tensor having the form given by Eq. (3)
can be significantly simplified if we cast it into the standard form

of perfect anisotropic fluids. This can be done by means of the trans-
formations Ul ? U⁄l and Wl ? W⁄l, respectively, so that [38–40]

U�l

W�l

� �
¼

cos a
ffiffiffiffiffiffiffiffiffiffi
q2þp2
q1þp1

q
sina

�
ffiffiffiffiffiffiffiffiffiffi
q1þp1
q2þp2

q
sin a cos a

0
B@

1
CA Ul

Wl

� �
; ð4Þ

representing a ‘‘rotation’’ of the velocity four-vectors in the (Ul,Wl)
velocity space. Notice that the transformations given by Eq. (4)
leave the quadratic form (q1 + p1)UlUm + (q2 + p2)WlWm invariant.
Thus we have

TlmðU;WÞ ¼ TlmðU�;W�Þ: ð5Þ
As for the vectors U⁄l and W⁄l we assume that one is timelike,
while the other is spacelike, so that U�lW�

l ¼ 0.
With the use of the latter relationship and Eq. (4) we obtain the

rotation angle as

tan 2a ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q1 þ p1ð Þðq2 þ p2Þ

p
q1 þ p1 � ðq2 þ p2Þ

UlWl: ð6Þ

Next we define the following quantities [38–40]:

Vl ¼ U�lffiffiffiffiffiffiffiffiffiffiffiffiffi
U�aU�a

q ; vl ¼ W�lffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�W�aW�

a

q ; ð7Þ

e ¼ TlmVlVm ¼ ðq1 þ p1ÞU�aU�a � ðp1 þ p2Þ; ð8Þ

r ¼ Tlmvlvm ¼ ðp1 þ p2Þ � ðq2 þ p2ÞW
�aW�

a; ð9Þ

P ¼ p1 þ p2; ð10Þ

respectively. Thus, the energy–momentum tensor of the two non-
interacting perfect fluids can be written as

Tlm ¼ ðeþPÞVlVm �Pglm þ ðr�PÞvlvm; ð11Þ

where

VlVl ¼ 1 ¼ �vlvl; ð12Þ

and

vlVl ¼ 0: ð13Þ

Note that the energy–momentum tensor given by Eq. (11) is the
standard form for anisotropic fluids [40].

The energy density e and the radial pressure r are given by

e ¼ 1
2
ðq1 þ q2 � p1 � p2Þ þ

1
2

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðq1 þ p1 þ q2 þ p2Þ

2 þ 4ðq1 þ p1Þðq2 þ p2Þ ðUlWlÞ2 � 1
h ir

;

ð14Þ

and

r ¼ �1
2

q1 þ q2 � p1 � p2ð Þ þ 1
2

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðq1 þ p1 � q2 � p2Þ

2 þ 4ðq1 þ p1Þðq2 þ p2ÞðU
lWlÞ2

q
;

ð15Þ

respectively [38–40].
In comoving spherical coordinates x0 = t, x1 = r, x2 = #, and x3 = /

we may choose V1 = V2 = V3 = 0, V0V0 = 1, and v0 = v2 = v3 = 0,
v1v1 = �1 [38–40]. Therefore the components of the energy–
momentum of two non-interacting perfect fluids take the form

T0
0 ¼ e; T1

1 ¼ �r; T2
2 ¼ T3

3 ¼ �P; ð16Þ

where e is the total energy–density of the mixture of fluids, r = Pr is
the pressure along the radial direction, while P = P\ is the tangen-
tial pressure on the r = constant surface.
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