

Astroparticle Physics 29 (2008) 42–54

Astroparticle Physics

www.elsevier.com/locate/astropart

Study of TeV neutrinos with upward showering muons in Super-Kamiokande

S. Desai^{c,*}, K. Abe^a, Y. Hayato^a, K. Iida^a, K. Ishihara^a, J. Kameda^a, Y. Koshio^a, A. Minamino a, C. Mitsuda a, M. Miura a, S. Moriyama a, M. Nakahata a, Y. Obayashi a, H. Ogawa a, M. Shiozawa a, Y. Suzuki a, A. Takeda a, Y. Takeuchi a, K. Ueshima a, H. Watanabe a, S. Yamada a, I. Higuchi b, C. Ishihara b, M. Ishitsuka b, T. Kajita b, K. Kaneyuki b, G. Mitsuka b, S. Nakayama b, H. Nishino b, K. Okumura b, C. Saji b, Y. Takenaga^b, S.T. Clark^c, F. Dufour^c, E. Kearns^c, S. Likhoded^c, J.L. Raaf^c, J.L. Stone^c, L.R. Sulak c, W. Wang c, M. Goldhaber d, D. Casper e, J.P. Cravens e, J. Dunmore e, W.R. Kroppe, D.W. Liue, S. Minee, C. Regise, M.B. Smye, H.W. Sobele, M.R. Vaginse, K.S. Ganezer f, B. Hartfiel f, J. Hill f, W.E. Keig f, J.S. Jang g, I.S. Jeong g, J.Y. Kim g, I.T. Lim^g, M. Fechner^h, K. Scholberg^h, N. Tanimoto^h, C.W. Walter^h, R. Wendell^h, S. Tasakaⁱ, G. Guillian^j, J.G. Learned^j, S. Matsuno^j, M.D. Messier^k, A.K. Ichikawa^l, T. Ishida¹, T. Ishii¹, T. Kobayashi¹, T. Nakadaira¹, K. Nakamura¹, K. Nitta¹, Y. Oyama¹, Y. Totsuka¹, A.T. Suzuki^m, M. Hasegawaⁿ, K. Hiraideⁿ, I. Katoⁿ, H. Maesakaⁿ, T. Nakayaⁿ, K. Nishikawaⁿ, T. Sasakiⁿ, H. Satoⁿ, S. Yamamotoⁿ, M. Yokoyamaⁿ, T.J. Haines o, S. Dazeley p, S. Hatakeyama p, R. Svoboda p, M. Swanson q, A. Clough r R. Gran^r, A. Habig^r, Y. Fukuda^s, T. Sato^s, Y. Itow^t, T. Koike^t, T. Tanaka^t, C.K. Jung^u, T. Kato ^u, K. Kobayashi ^u, C. McGrew ^u, A. Sarrat ^u, R. Terri ^u, C. Yanagisawa ^u, N. Tamura ^v, Y. Idehara ^w, M. Sakuda ^w, M. Sugihara ^w, Y. Kuno ^x, M. Yoshida ^x, S.B. Kim ^y, B.S. Yang y, J. Yoo y, T. Ishizuka aa, H. Okazawa z, Y. Choi ab, H.K. Seo ab, Y. Gando ac, T. Hasegawa c, K. Inoue c, Y. Furuse d, H. Ishii ad, K. Nishijima ad, H. Ishino ae, Y. Watanabe ae, M. Koshiba f, D. Kielczewska ag, H. Berns h, K.K. Shiraishi ah, E. Thrane ah, K. Washburn ah, R.J. Wilkes ah The Super-Kamiokande Collaboration

^a Kamioka Observatory, Institute for Cosmic Ray Research, University of Tokyo, Kamioka, Gifu 506-1205, Japan

^b Research Center for Cosmic Neutrinos, Institute for Cosmic Ray Research, University of Tokyo, Kashiwa, Chiba 277-8582, Japan

^c Department of Physics, Boston University, Boston, MA 02215, USA

^d Physics Department, Brookhaven National Laboratory, Upton, NY 11973, USA

^e Department of Physics and Astronomy, University of California, Irvine, Irvine, CA 92697-4575, USA

^f Department of Physics, California State University, Dominguez Hills, Carson, CA 90747, USA

^g Department of Physics, Chonnam National University, Kwangju 500-757, Republic of Korea

^h Department of Physics, Duke University, Durham, NC 27708, USA

ⁱ Department of Physics, Gifu University, Gifu, Gifu 501-1193, Japan

^j Department of Physics and Astronomy, University of Hawaii, Honolulu, HI 96822, USA

E-mail address: shantanu@neutrino.bu.edu (S. Desai).

^{*} Corresponding author. Present address: Department of Physics, Pennsylvania State University, University Park, PA 16802, USA. Tel.: +1 814 865 3331; fax: +1 814 863 9608.

k Department of Physics, Indiana University, Bloomington, IN 47405-7105, USA ¹ High Energy Accelerator Research Organization (KEK), Tsukuba, Ibaraki 305-0801, Japan ^m Department of Physics, Kobe University, Kobe, Hyogo 657-8501, Japan Department of Physics, Kyoto University, Kyoto 606-8502, Japan ^o Physics Division, P-23, Los Alamos National Laboratory, Los Alamos, NM 87544, USA P Department of Physics and Astronomy, Louisiana State University, Baton Rouge, LA 70803, USA ^q Department of Physics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA ^r Department of Physics, University of Minnesota, Duluth, MN 55812-2496, USA ^s Department of Physics, Miyagi University of Education, Sendai, Miyagi 980-0845, Japan ^t Solar Terrestrial Environment Laboratory, Nagoya University, Nagoya, Aichi 464-8602, Japan ^u Department of Physics and Astronomy, State University of New York, Stony Brook, NY 11794-3800, USA Department of Physics, Niigata University, Niigata, Niigata 950-2181, Japan w Department of Physics, Okayama University, Okayama 700-8530, Japan * Department of Physics, Osaka University, Toyonaka, Osaka 560-0043, Japan y Department of Physics, Seoul National University, Seoul 151-742, Republic of Korea ² International and Cultural Studies, Shizuoka Seika College, Yaizu, Shizuoka 425-8611, Japan aa Department of Systems Engineering, Shizuoka University, Hamamatsu, Shizuoka 432-8561, Japan ab Department of Physics, Sungkyunkwan University, Suwon 440-746, Republic of Korea ac Research Center for Neutrino Science, Tohoku University, Sendai, Miyagi 980-8578, Japan ad Department of Physics, Tokai University, Hiratsuka, Kanagawa 259-1292, Japan ae Department of Physics, Tokyo Institute for Technology, Meguro, Tokyo 152-8551, Japan af The University of Tokyo, Tokyo 113-0033, Japan ^{ag} Institute of Experimental Physics, Warsaw University, 00-681 Warsaw, Poland ^{ah} Department of Physics, University of Washington, Seattle, WA 98195-1560, USA

> Received 27 October 2007; accepted 9 November 2007 Available online 22 November 2007

Abstract

A subset of neutrino-induced upward through-going muons in the Super-Kamiokande detector consists of high-energy muons which lose energy through radiative processes such as bremsstrahlung, e⁺e⁻ pair production and photonuclear interactions. These "upward showering muons" comprise an event sample whose mean parent neutrino energy is approximately 1 TeV. We show that the zenith angle distribution of upward showering muons is consistent with negligible distortion due to neutrino oscillations, as expected of such a high-energy neutrino sample. We present astronomical searches using these high-energy events, such as those from WIMP annihilations in the Sun, Earth and Galactic Center, some suspected point sources, as well as searches for diffuse flux from the interstellar medium. © 2007 Elsevier B.V. All rights reserved.

PACS: 95.55.Ka; 95.55.Vj; 96.40.Pq

Keywords: High-energy neutrinos; Muon energy losses; Astrophysics

1. Introduction

In order to select neutrino events with the highest energies, we consider muon neutrino interactions in the rock around the detector, because the effective target volume is very much increased [1]. To separate neutrino-induced muons from cosmic ray muons, we select only upwardgoing muons, since the background from downward going cosmic ray muons overwhelms any neutrino-induced muons from above. Muons penetrating the detector have energies of at least several GeV and point along the neutrino direction within a few degrees, allowing astrophysical studies. Neutrinos originating from cosmic point sources are expected to have harder energy spectra than the background of atmospheric neutrinos. Some of these highenergy neutrino-induced muons undergo radiative energy loss. We identify these muons as "showering muons".

High-energy muons are correlated with high-energy neutrinos, which allow us to statistically select an extremely high-energy parent neutrino sample from the Super-Kamiokande data. Our aim is to extract this sample for physics and astronomy studies.

The Super-Kamiokande (Super-K) experiment [2] has previously analyzed two topologically distinct categories of upward muons caused by neutrino interactions in the rock below the detector: muons which exit the detector (called "through-going") and those which stop inside the detector (called "stopping") [3]. The parent neutrino energy of upward stopping and through-going muons for atmospheric neutrinos is peaked at ≃10 GeV and ≃100 GeV, respectively. In 1646 days of data, Super-Kamiokande detected 1856 upward through-going and 458 upward stopping muons. Oscillation results using only upward through-going muons have

Download English Version:

https://daneshyari.com/en/article/1771013

Download Persian Version:

https://daneshyari.com/article/1771013

<u>Daneshyari.com</u>