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A B S T R A C T

The study shows how to define, without any ad hoc assumption, the average ion charge ZI in the electron-
ionmodel for plasmas and liquidmetals: this definition comes out of the condition that a plasma consisting
of electrons and nuclei can be described as an electron–ionmixture. Based on this definition of the average
ion charge, the Quantum Hyper-Netted Chain (QHNC) method takes account of the thermal ionization
and the resonant-state contribution to the bound electrons forming an ion.

On the other hand, Blenski and Cichocki (2007) have derived a formula to determine the uniform elec-
tron density in a plasma as an electron–ion mixture by using the variational method with the help of
the local density approximation. Without use of any approximation, we derived the formula determin-
ing the electron density in an extended form on the basis of the density functional theory. This formula
is shown to be valid also for the QHNC method.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

A liquid metal or a plasma can be taken as a mixture of elec-
trons and ions with uniform ion density n0

I and electron density
n0
e . This binary mixture consists of ions with a definite ionic

charge ZI and the free electrons, interactingwith each other via binary
potentials v rij ( ) [i,j = I or e] under the charge neutrality condition
n Z n0 0
e

I
I= . Also, the ions are assumed to behave as classical par-

ticles, while the free electrons form a quantum fluid changed into
a classical fluid at high temperature. We call this mixture “the
electron-ion model” for a plasma. Although it is important to cal-
culate the average ion-charge ZI in a plasma for description of
thermodynamic quantities, there is no established method to de-
termine ZI in the electron–ionmodel at the present time. In this work,
we show how to obtain the definition of the average ion-charge ZI
in the electron–ion model. Under some conditions only, a plasma
as an electron-nuclei mixture can be treated as an electron-ion
mixture on the basis of the electron–ion model. This condition itself
provides the definition of an “average ion” in the electron–ionmodel.
To establish this definition, we need the radial distribution func-
tions (RDF) as already known quantities in an electron–ion mixture
with the given electron–ion and ion–ion interactions, v reI( ) and v rII( ).
In this regard, the quantum hyper-netted (QHNC) method [1] can
determine the RDFs in the mixture for arbitrary interactions v rij ( )
[even for charged hard-core potentials]. On the other hand, Saumon
and coworkers [2] have calculated ZI with the use of the QHNC

method on the basis of some ad hoc assumptions about a separa-
tion of the bound electron density distribution from the total electron
density distribution around a nucleus in a plasma: these assump-
tions can be avoided by use of the present definition of ZI.

The QHNC method can produce the plasma structure including
ZI at arbitrary temperature T and ionic density n0

I from the atomic
number ZA as an only input [3]. It should be emphasized that the
QHNC method yields structure factors in good agreement with ex-
periments for simple metals [4–6]. Also, this method can determine
the electron–electron correlation in a consistent way with the ionic
structure without the use of jellium model for electrons [7–9].
However, the QHNC method has the following two weak points, to
be improved, about the determination of ZI and a bootstrap rela-
tion to generate the electron–electron correlation consistent with
the ion structure, as follows:

(I) In the QHNC method, the ionic charge Z Z ZI A B= − is simply
defined from Z n r dB e

b≡ ∫ ( ) r using the bound-electron density
n re
b( ) for the wave equation. Therefore, this definition does

not take account of the contribution of resonant states to ZB.
On the other hand, Blenski and coworkers [10–12] have
derived an equation to determine the electron density n0

e in
a plasma by using the variational method (VAAQPmodel). Al-
though the VAAQPmodel provides Z n nI

e I= 0 0 and ZB, it cannot
give the bound-electron distribution ρb(r) to fulfill
Z r dB b= ∫ ( )ρ r and, thus, the ion–ion correlation g rII( ). In
this work, we derived two relations which are valid within
the framework of the density functional (DF) theory and the
electron–ion model.
(a): In the electron–ion model, the average ion charge ZI is

defined as
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Z
n
n

Z n r n g r d Z r dI

e

I A e
e

eI A b= = − ( )− ( )[ ] = − ( )∫ ∫0

0
0 r rρ (1)

ρb e
e

eIr n r n g r( )≡ ( )− ( )0 . (2)

This relation is derived from the necessary condition that a plasma
consisting of electrons and nuclei can be described as a mixture of
electrons and ions. At the same time, Eq. (1) is rewritten in the equiv-
alent relation:

Z n r n g r dA e
e

II= ( )− ( )[ ]∫ 0 r. (3)

Here, g reI( ) and g rII( ) are the electron–ion and ion–ion RDFs, re-
spectively, in the electron–ionmodel, and ne(r) is the electron density
distribution around the nucleus, when a chosen ion in this mixture
is thought as an inserted atom with a nucleus ZA.

(b): The uniform density n0
e in the electron–ion model must

satisfy the following condition:

v r g r d S nes II II
I

T( ) ( ) = ( ) =∫ r μ μκ β0 0 , (4)

with S QII( ) being the structure factor. The above equation is reduced
to the result of Blenski et al., when we make approximations, g rII( )
by the step-function and SII 0 0( )= . Equations (1) and (4) solve the
problem to determine the average ion charge ZI.
(II): The QHNC method uses the following bootstrap relation to

determine the electron–electron response function χee Q( )
from the electron density distribution ne(r|e) around a fixed
electron in a plasma:

FQ Qn r n n r n i d Qe
e

e
e

eee e( )−[ ]≡ ( )−[ ] ( ) = ( ) −∫0 0
0 1exp Qr r χ χ (5)

with the density response function χQ
0 of a non-interacting system.

This relation results from the approximation used by Kukkonen and
Overhauser [13,14] for an electron gas. Since Eq. (5) is an exact re-
lation for a classical electron gas, it is appropriate in treating a high-
temperature plasma. Therefore, the QHNC method with the use of
Eq. (5) provides a good description of the pair correlations for a
hydrogen-plasma gas at low densities and high temperatures where
the electrons behave as a classical electron gas [15]. However, Eq.
(5) contains an approximation that the fixed electron in a liquidmetal
has the exchange effect to surrounding electrons: the exchange-
effect part must be subtracted in the form:

FQ Q Qn r e n Q n v Q G Qe
e

ee
e

ee xˆ .( )−[ ]= ( ) − − ( ) ( )0
0

01χ χ β χ (6)

Here, Gx(Q) is the exchange part of the local field correction.
If we approximate Gx(Q) by the use of G Qx

jell( ) , which is well
known for an electron gas in the jellium model, the QHNC method
yields a closed set of equations for plasma properties. To get a
closed set of equations to determine all quantities in a self-
consistent manner, it is necessary to build up a new equation for
Gx(Q).

2. Charge neutrality condition in the electron–ion model

At first, we note exact relations between the structure factors
S Qij ( ) in the electron–ion model [1]:

S Q
Q

Z
S QeI

I
II( )=

( )
( )

ρ
(7)

χ ρ χ
χee

I
II e

ee

Q
Q
Z

S Q
n C Q

Q

Q

( )=
( )

( )+
− ( )

2 0

0
01

. (8)

Here, ρ(Q) is the screening density distribution of a pseudo-atom
defined by the non-interacting density response function χQ

0 and
the direct correlation functions Cij in the electron–ion mixture:

ρ χ
χ

Q
n C Q

n C Q
Q

Q

( )≡
( )

− ( )
0

0

0
01

e
eI
e

ee

. (9)

Thus, Eq. (7) leads to the exact relation, which must be followed
in any electron–ion model:

Z S Z S S nI II I eI ee ee
e

T0 0 0 0 0( )= ( )= ( )= ( )=χ κ β , (10)

with the compressibility κT. By the inverse Fourier transform, the
first part of the above equation is rewritten in the form

Z n g r d Z n g r dI
e

eI I
I

II= ( )−[ ] − ( )−[ ]∫ ∫0 01 1r r, (11)

which states that an ion fixed at the origin keeps the charge neu-
trality by accumulating the free electrons and by pushing away the
ions around it in the whole space, not within theWigner–Seitz cell.

On the other hand, whenwe fix an ion in the electron–ionmixure
at the origin of coordinates, the nuclei forming this ion has the elec-
tron density ne(r) around it; this electron density ne(r) is obtained
by solving a wave equation for the external potential caused by this
fixed nucleus as a sum of the bound electron density n re

b( ) and the
continuum electron density n re

c( ). Furthermore, the electron density
ne(r) satisfies the following equation represented in terms of the
Friedel sum of phase shifts δℓ(E)

n r n d f f E
d E

dE
dEi

i

e
e( )−[ ] = ( )+ +( ) ( )

( )
∫ ∑ ∑ ∫

<

∞

0
0 0

2
2 1r ε

π
δ

ε
�

�

� , (12)

where n r n r n r r n re e
b

e
c

b e
f N( )= ( )+ ( )= ( )+ ( )ρ is a sum of the “bound

electron” distribution ρb(r) and the free-electron distribution n re
f N( )

with f ε β ε μ( )= −( ){ }+[ ]1 10exp e . If we take the bound-electron
density n re

b( ) to define Z n r d fi iB e
b= ∫ ( ) =∑ ( )<r ε ε0 , the free-electron

part n r n re
f

e
c( )= ( ) must satisfy the following relation:

Z S n r n d Z n

f E
d E

dE
dE

I II e
f e

I
I

T0

2
2 1

0 0( )= ( )−[ ] =

= +( ) ( )
( )

∫

∑

r κ β

π
δ

�
�

�

00

∞

∫ .
(13)

This relation is fulfilled generally for simple metals. However, there
are some liquid metals and plasmas, for which this relation cannot
be satisfied due to the large contribution of resonant phase-shifts
and small compressibility κT at the high density. As a conse-
quence, we must treat in general a part Δρb(r) of the continuum
electron n re

c( ) as the part involved in the bound-electron
distribution ρb(r) to form an ion: ρ ρb e

b
br n r r( )= ( )+ ( )Δ and

Z n r r dB e
b

b= ( )+ ( )[ ]∫ Δρ r .

For the purpose of obtaining the expression of Δρb(r), we con-
sider a chosen central ion as an atom immersed in the electron–
ion mixture with a nucleus ZA fixed at the origin of coordinates: the
electron–ion model with a nucleus, forming the central ion, fixed
at the origin is referred to as “the average atom (AA) model”, here-
after. This nucleus accumulates electrons with the electron density
n r n re e N( )≡ ( ) and pushes away surrounding ions with nI(r|N),
keeping the charge neutrality condition around it:

Z n r N n d Z n r N n dA e
e

I I
I= ( )−[ ] − ( )−[ ]∫ ∫0 0r r. (14)

The following three conditions are necessary for the electron density
ne(r|N) to be consistent with the charge neutrality condition (11)
in the electron–ion model.
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