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A B S T R A C T

We report results on the self-consistent linear response theory of quantum average-atoms in plasmas.
The approach is based on the two first orders of the cluster expansion of the plasma susceptibility. A
change of variable is applied, which allows us to handle the diverging free-free transitions contribution
in the self-consistent induced electron density and potential. The method is first tested on the case of
rare gas isolated neutral atoms. A test of the Ehrenfest-type sum rule is then performed in a case of an
actual average-atom in a plasma. At frequencies much higher than the plasma frequency, the sum rule
seems to be fulfilled within the accuracy of the numerical methods. Close to the plasma frequency, the
method seems not to account for the cold-plasma dielectric function renormalization in the sum rule,
which was correctly reproduced in the case of the Thomas–Fermi–Bloch self-consistent linear re-
sponse. This suggests the need for a better accounting for the outgoing waves in the asymptotic boundary
conditions.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

The study of photo-absorption (PA) in dense plasmas is rele-
vant as a part of fundamental research on strongly coupled Coulomb
systems. PA spectra are among the quantities that can be mea-
sured in such plasmas and compared to the ones calculated from
models, allowing one to test theories of such systems. Knowledge
of the PA cross-sections is also required in inertial fusion research
as well as in astrophysics since radiative transfer is often the main
energy transport mechanism in dense plasmas typical for these ap-
plications. In the present paper, we will consider plasmas in which
a significant number of electrons remain bound to the ions even
at relatively high temperatures and densities. This is the case in prac-
tically all plasmas of interest in these fields, provided the considered
element has a moderate or high atomic number.

We address in the present paper an approach to the PA in plasmas
which is based on the frequency-dependent linear response theory.
This linear response is considered in the framework of a relatively
simple equilibrium plasma model. It is the Variational Average-
Atom in Quantum Plasma (VAAQP) model [1–6] in which bound and
free electrons are treated on the same footing. This property is es-
sential in the equilibrium theory of dense plasmas, especially in order
to address the warm dense matter regime, as using separate

approaches for bound and free electrons lead to inconsistencies in
the case of pressure ionization (see, for instance Ref 7.). Such unified
description of the bound and free electrons is also necessary in the
PA theories if one aims to include the channel mixing effects (see
Refs 8,9.), as for instance the configuration interaction involving
bound and free electron configurations, which can be important in
atomic physics. The self-consistent screened atomic potential in the
VAAQP model accounts for free electrons and also includes non-
central ions using the Wigner–Seitz (WS) cavity hypothesis [10,11].

From a theoretical point of view, interaction of photons with a
partially ionized plasma is a much more complex process than in-
teraction with individual (isolated) atoms or ions. In some of the
equilibrium plasma models, a part of many-body correlations is in-
cluded which should be then also accounted for in the dynamic linear
response theory. However, in the dynamic response of the plasma
additional difficulties appear. The delocalized or “free” electrons may
participate in atomic processes, for instance, the Bremsstrahlung
or its inverse process but also in collective ones. In atomic pro-
cesses, a well known difficulty appears since delocalized electrons
can belong to both initial and final states of the plasma. The idea
to calculate PA cross-sections for each atom of the plasma faces the
problem of divergences stemming from the fact that delocalized elec-
trons cannot be associated with a particular ion center. This difficulty
is often circumvented in practical opacity calculations, making the
assumption that the PA cross-section may be split into a sum of three
contributions corresponding to the bound-bound, bound-free and
free-free electron transitions, respectively. Such a division is however
only valid in the independent particle model. Once this division is
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postulated, the bound-bound and bound-free transitions may be then
treated using some more sophisticated methods of traditional atomic
physics including the fine structure levels obtained by diagonal-
ization of the atomic Hamiltonian limited to bound electrons. The
free-free transitions remain treated within the independent-
electron approximation and their dipole matrix elements are
“localized” using the acceleration form that stems from the Ehrenfest
relation. However, in such approaches the channel mixing effects
or the configuration interaction including free configurations cannot
be accounted for. Also, collective effects including those of atomic
nature (i.e. collective effects in which participate free electron wave
functions that are modified by ion centers) are disregarded within
the independent electron approximation.

A systematic approach to the dynamic linear response of atoms
in plasmas has been proposed in Ref. 12. This approach was based
on the idea of a cluster expansion introduced in Ref. 13, and its prin-
cipal objective was to deal with the divergence problem due to the
free-free transitions in situations where channel mixing is non-
negligible. A modified version of this approach was proposed in Ref.
14. It leads to a practical method Ref. 15, allowing one to obtain the
dynamic linear response in the framework of the quasi-classical
Thomas–Fermi–Bloch (TFB) theory (see Refs. 16–18). The method was
applied in Refs 19,20 to calculate PA in some examples of an impu-
rity immersed in a plasma. However, this method relies on the TFB
theory and its extension to the case of a quantum atom in a plasma
seemed difficult. Further studies on the quantum linear response re-
sulted in a new sum rule [21] which is a generalization of the Ehrenfest
theorem to the dynamic linear response of an atom in a plasma. On
the other hand, it was shown [1] that the classical Thomas–Fermi atom
at finite temperature model of Ref. 16 can be considered as a special
case of the VAAQP model, i.e. that it can be obtained in the frame-
work of the cluster expansion method of Refs. 1–6. In Ref. 22, it was
proven that the sum rule of Ref. 21 applies also to the dynamic re-
sponse of atoms in plasmas treated in the framework of the quasi-
classical TFB theory. In the same paper, the new sum rule in the TFB
case was also checked for the first time by direct numerical calcu-
lations. The values of the induced frequency-dependent atomic dipoles
obtained using the method of Refs. 19,20 appeared to be the same as
the dipole values stemming from the sum rule.

In this paper, we present an approach to the linear frequency-
dependent response applied to the VAAQP model and some results
obtained using this approach. In section II we discuss the formal-
ism of the linear susceptibilities and the method of the Green
functions that is used in the self-consistent calculation of the induced
first-order electron density and potential. The Ehrenfest-like sum
rule of Refs. 21 and 22 is recalled in section III. In this section, an
example of the validation of the sum rule in the TFB case is also
displayed. The method used in the self-consistent calculations is
applied in section IV to compute the PA cross-section of rare gases
neutral atoms. Section V presents calculations in some cases of a
chosen quantum plasma performed in order to check the Ehrenfest-
like sum rule in that cases. Main conclusions are presented in the
last section.

2. Cluster expansion of the photo-absorption cross-section

The plasma susceptibility χ ω
� �
r r, ,′( ) is the time Fourier trans-

form of the plasma density response-function with respect to an
external potential:

δ ω χ ω φ ωn r dr r r e rexact ext
� � ��� � � �
, , , ,( )= ′ ′( ) −( ) ′( )∫ (1)

where δ ωn rexact
�
,( ) is the time Fourier transform of the exact elec-

tron density displacement in the first order of the external potential,
and φ ωext

�
′( )r , is the time Fourier transform of that potential.

The plasma susceptibility can be calculated using the cluster ex-
pansion [12,13] which gives, limiting the expansion to the zeroth
and first orders:

χ ω χ ω χ ω χ
� � � � � ��� � � �
r r r r n dR r r Ri, , , , , ,′( )= − ′( )+ ′( )( −( ) ( ) (∫0 1 0)) − ′( ))

� �
r r , ω

(2)

In (2), χ ω0( ) − ′( )
� �
r r , corresponds to the susceptibility of a ho-

mogeneous electron gas neutralized by a rigid, homogeneous
ion background (zeroth order system), ni is the ion density and
χ ω1( ) ′( )� � �

r r R, , , is the susceptibility of an infinite inhomogeneous elec-
tron gas modified by the presence of one ion placed at the position�
R (first-order system).

The space Fourier transform of χ ω
� �
r r, ,′( ) can be written as:

χ ω χ ω χ ω χ ωk k n k R ki, = , , = 00 1 0( ) ( ) + ( ) − ( )( )( ) ( ) ( )
� � � �

(3)

where we use the following
�
k -representation of the operators:

� � � �� � ��� � �� � � �
k A k drdr e A r r eik r ik r′ = ′ ′( )− ⋅ − ′⋅ ′∫ , (4)

with A having the
�
r -representation:

� � � �
r A r A r r′ = ′( ),

The plasma electric-field energy absorption cross-section can also
be written in the cluster expansion, which gives at the first order:

σ ω σ ω σ ωk k k, , ,( )= ( )+ ( )+( ) ( )0 1 … (5)

The zeroth order term σ ω0( )( )k , can be related to the zeroth order
susceptibility:

σ ω π ω χ ω0
2

2
04( ) ( )( )= − ( )k

e
k c

k, Im ,
eff

(6)

where c ceff eff= ( )ε ω is the effective light velocity in the plasma.
The first order term σ ω1( )( )k , is connected to the first order sus-
ceptibility [14]:

σ ω π ω χ ω χ ω1
2

2
1 04

0( ) ( ) ( )( )= − ( )− ( )( )k
e

k c
n k ki, Im ,

eff

� � �
(7)

In the present paper, we will limit ourselves to the
dipole approximation in which the external potential has the
form:

φ ω ωext
�
r E z,( )= ( )0 (8)

Expanding
� � �
k kχ ω χ ω1 00( ) ( )( )− ( )( ), in the low-k limit, we obtain:

� � �
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k k

k drdr z r r

χ ω χ ω

χ ω

1 0

2 1

, 0

= 0

( ) ( )

( )

( )− ( )( )
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r r z, , (9)

The zeroth-order term in Eq. (9) is equal to zero due to the par-
ticle conservation.

Using Eq. (9) in Eq. (7), and substituting Eq. (8), we get:

σ ω πω
ε

ω πω
ε

α ω1

0

4 4( )( )= − ( )= ( )
c E

p
c

z
eff eff

Im Im (10)

where we define the dipole pz(ω) and polarizability α(ω) as:

α ω δ ω δ ω δ( )=
−

= ( )− ( )( )=( ) ( )∫
p
E

e
E

drz n r n r
e
E

dr z nz

0 0

1 0

0
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, ,

��
r ,ω( )( )∫
(11)

where:

δ ω χ ω φ ωn r dr r r e rext
0 0( ) ( )( )= ′ ′( ) −( ) ′( )∫
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, , , , (12)
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