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A B S T R A C T

The first non-vanishing term in the perturbation expansion of the electron contribution to the line width,
commonly used in spectral line broadening by plasmas, was previously expressed in terms of the ther-
mally averaged bremsstrahlung Gaunt factor. The approximations in the derivation, however, suggest that
the result is uncertain. The electron width formula is tested with the hydrogen Balmer series and found
suspect. Calculations for the He II Lyman series also display similar difficulties. The limitation of this elec-
tron width formulation is traced to the absence of an explicit strong collision cutoff beyond which the
second-order theory is invalid.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Spectral lines provide valuable information [1] and Stark-
broadening models have been developed [2–4] to characterize
plasmas [5–7]. These models share approximations such as quasi-
static ions and impact electrons [1]. Due to the large number of
calculations often necessary to analyze spectra, these efforts employ
fast algorithms to compute the width contribution from perturb-
ing electrons. One approach expresses the first non-vanishing term
in the perturbation expansion of the electron width as the ther-
mally averaged bremsstrahlung Gaunt factor [8]. This formula was
successfully tested for transitions involving atomic levels with low
principal quantum numbers (PQN) [8]. Contrary to other ap-
proaches [2,3,9], the Gaunt factor expression [8] does not include
an explicit strong collision cutoff beyond which perturbation theory
becomes invalid. Consequently, there remained uncertainty whether
the formula extends to spectral lines associated with higher PQNs.

Unfortunately, plasma experiments are challenging and data often
contain large uncertainties making it difficult to discriminate among
models. One notable exception is the high-precision measure-
ments of the hydrogen Balmer series [10]. The purpose here is to
compare two electron width models [2,8] for fast line profile
calculations at the conditions of the measured spectra. This re-
quires an extension of the O’Brien–Hooper formalism [8] to neutral
radiators readily accomplished from their main results. The com-
parisons show that the connection to bremsstrahlung used in line
profile calculations [4,7,8,11,12] is suspect. A second test for the He
II Lyman series yields similar conclusions. Possible consequences
in the analysis of recent opacity experiments [6] are entertained.

The electron width models are also applied to isolated lines in Li-
like systems and compared with measurements [13].

2. Electron widths

The line shape function for an ion emitting or absorbing (the ra-
diator) a photon of energy �ω while immersed in a plasma is given
in the “standard” Stark-broadening theory by [1]
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where W F( ) is the ion electric microfield probability distribution
function and (neglecting lower state broadening to simplify notation)
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Here, Tra denotes a trace over the internal states of the radia-
tor,

�
d is the radiator dipole operator, ρ describes the radiator internal

state populations, and the matrix elements of the detuning fre-
quency from line center are given by

Δω ω ω ωμν μ ν= − + (2.3)

with �ωα , the energy of the radiator internal state α .
The description of electron broadening in φ often assumes weak

collisions of duration much shorter than the internal radiator state
lifetimes involved in the radiative transition [1]. Hence, collisions
are treated in perturbation theory retaining only the first non-
vanishing term in the electron–radiator interaction simplified to the
dipole approximation. The resulting second-order electron width
is then given by
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where Tre , ρe , and He denote a trace, density matrix, and Hamil-
tonian for an electron gas, respectively, and

�
Fe is the electric field

produced by the electron gas at the radiator. In the line formula-
tions of interest here, the electron width is rewritten in the form

φ ω π
π

ωΔ Δ( )= − ⋅ ( )
4

3
22n e m

T
d dGe

�

� �
(2.5)

where m , ne , and T, are the electron mass, number density, and tem-
perature (energy units), respectively, and the G-function is related
to the space and time dependent charge-density fluctuations in an
electron gas [14]. Two approaches for computing the G-function [2,8]
that are commonly used in experimental plasma diagnostics are
compared in the present work.

2.1. Lee model

The second-order width can be written in terms of an integral
over the momentum transfer in the electron–radiator collision [2,14].
Assuming � �Δω T yields
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where λe and ωp are the electron Debye length and plasma
frequency,
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e is the elementary unit of electric charge, and ε ω, k( ) is the di-
electric function for a homogeneous electron gas. Thus, the latter
neglects the net radiator charge effects on the perturbing electrons.
Nevertheless, it is expected to be valid for charged radiators [9].

The cutoff km , which limits the momentum transfer in a colli-
sion and avoids the divergence of the integral, can be estimated by
considering the partial wave expansion of the full electron–
radiator interaction [15,16], which contains the spherical Bessel
function j kra�( ) [17] with ra the radial position of the bound elec-
tron. In most cases of interest kra � 1 and the lowest order non-
vanishing term yields the dipole approximation. Thus, a reasonable
upper limit is given by k values that are cutoff by fast oscillations
in j kra�( ) [15],
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where E j is the binding energy of the radiator jth level. For hydrogenic
systems,
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with Ze the nuclear charge, n the level PQN, and ao the Bohr radius.
Further approximations replace the dielectric function by its
Δω → ∞0 and limits to get [2]:
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with E z1( ) the exponential integral [17]. Finally, Lee takes [2]

G Min G GL n oΔ Δω σ ω( )= + ( )[ ]∞, (2.1.9)

where neglected strong collisions are accounted by σ2 1 5= . , σ3 1 0= . ,
σ 4 0 75= . , σ5 0 5= . and σn = 0 4. for n > 5 [9,18]. For large
detuning,
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Thus, a correction is necessary to reproduce the quasi-static limit
[2]. The Griem et al. [9] and Calisti et al. [3,18] models are similar
to Lee’s [2] and need not be considered separately.

The subroutines to compute Stark profiles of one- and two-
electron systems with GL were incorporated into widely used codes
for designing and analyzing experiments [19,20]. In addition, the
subroutines were generously made available for other applications
[21].

2.2. O’Brien–Hooper model

An alternative expression for the G-function is given by the
thermal average [8]
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where g E Z net, ;Δω( ) is the bremsstrahlung Gaunt factor for absorp-
tion of a photon with energy �Δω by an electron with initial energy
E scattering in the Coulomb potential produced by the net radia-
tor charge, Z enet . It can be expressed in terms of the radial integrals
[8,22–24]
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for partial wave � and boundary conditions for the perturbing elec-
tron wave function
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with wave vector �2 2 2q m E= and δ� the phase shift.
In the case of neutral radiators ψ � �r E j qr,( ) = ( ), the spherical

Bessel function in the partial wave expansion of plane waves. Thus,
the Gaunt factor reduces to the Born approximation [24] with
thermal average [25]
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where K zo ( ) is the modified Bessel function of the second kind [17].
For large detuning

GOH
Born Δ Δω ω→ ∞( ) ∝ −1 2 (2.2.5)

reproducing the Holtsmark quasi-static limit [2]. The G-function ex-
pression in Eq. (2.2.1) describes ideal electrons interacting with the
net radiator charge; however, electron-screening effects can be ap-
proximated by GOH pΔω ω=( ) for Δω ω≤ p [26,27]; thus, avoiding the
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