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a b s t r a c t

A quantum average atom model is reformulated using Green's functions. This allows integrals along the
real energy axis to be deformed into the complex plane. The advantage being that sharp features such as
resonances and bound states are broadened by a Lorentzian with a half-width chosen for numerical
convenience. An implementation of this method therefore avoids numerically challenging resonance
tracking and the search for weakly bound states, without changing the physical content or results of the
model. A straightforward implementation results in up to a factor of 5 speed-up relative to an optimized
orbital based code.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Average atom models are widely used to calculate equation of
state [1e5] and other properties [6e11] of dense plasmas. They are
density functional theory based models, and despite being less
physically realistic than corresponding density functional theory
molecular dynamics based methods [12e14], they are still very
useful as they give a reasonable description of the plasma over a
wide range of temperatures and densities and are much less
computationally expensive.

Average atoms models come in a wide variety. They can be
purely orbital free in character, for example using the Thomas-
Fermi approximation [15], or use orbital based, Kohn-Sham den-
sity functional theory [1,4,10,16,17]. For a long time orbital based
models had numerical problems due to the presence of narrow
resonances in the continuum of free states. This led to erroneous
discontinuities in the predicted pressure when resonance states
occurred. Sophisticated algorithms were developed to track and
accurately sample these resonances [2], resulting in a continuous
prediction of pressure. These resonance trackers increase the
computational cost and are complicated to program.

In this article we reformulate an orbital based average atom
model in terms of the single-particle Green's function. The Green's
function has a useful property that it is analytic in the upper half
energy plane and has a non-negative imaginary part (i.e. the Her-
goltz property). This means that integrals over energy along the real
axis can instead be deformed into the complex energy plane, along
any (numerically convenient) contour. The advantage to this is that

the Green's function lying along the real axis is broadened at
complex energies by a Lorentzian of half-width equal to the
imaginary part of the complex energy. Therefore any structures that
need to be resolved for accurate real energy integrations, including
narrow resonances, are broadened automatically in the complex
plane. The contour integration over energy can therefore be easily
evaluated without adaptive grids for resonance tracking.

As an added benefit, bound states are treated numerically in
exactly the same way as continuum states in the Green's function
approach. Along the real energy axis, the density of states (DOS) of a
bound state is a Dirac delta function at the bound state eigen-
energy, and a search algorithm must be used to find all bound
states. In the complex plane the DOS becomes a continuous Lor-
entzian, so no search algorithm is necessary.

While this reformulation is interesting in its own right, for the
reasons just discussed it also offers a significant numerical speed-
up and a reduction in computational complexity, without chang-
ing the physical content or indeed the results. For clarity, let us
repeat; the converged results from this Green's function approach
are identical to the corresponding orbital based model (within
numerical tolerance).

To our knowledge this is the first formulation and numerical
evaluation of an average atom model in terms of Green's functions,
though it has been noted previously that the average atom orbitals
can be interpretated as spectral functions of the Green's functions
[18]. However, the Green's function formulation of a ‘single-center’
problem and the use of complex energy integration is not new, and
has been extensively used in solid-sate physics for many decades
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[19e21]. There it is part of a broader method known as Korringa-
Kohn-Rostoker Green's Function (KKR-GF), which has recently
found its first application in dense plasma physics [22].

The structure of this article is as follows: In section 2 we briefly
review the average atom model that is used throughout this article
to demonstrate the Green's function method. However the method
is equally applicable to other Kohn-Sham based average atom
models [1,2,10,11,23]. In section 3 we give the main equations for
the Green's function formulation. We demonstrate the contour
integration method and the broadening of resonances and bound
states both theoretically and in a numerical example. In section 4
we give our conclusions. Two appendices are provided, discussing
the calculation of wavefunctions and automatic contour generation.

2. Average atom physical model

In the present average atom model we consider a sphere of
radius R (volume V) containing an nucleus of charge Z at its center
(the origin) and electrons of density ne(r). The sphere is charge
neutral, i.e.Z
V

dr neðrÞ ¼ Z (1)

The non-relativistic Kohn-Sham Hamiltonian is

H ðrÞ ¼ � Z2

2me
V2 þ Veff ðrÞ (2)

Here the effective interaction is given by

Veff ðrÞ ¼
�
VelðrÞ þ VxcðrÞ

�
e2 (3)

where the electrostatic part is

VelðrÞ ¼ �Z
r
þ
Z
V

dr
neðr0Þ
jr � r0j (4)

and the exchange and correlation part is

VxcðrÞ ¼ dFxc

dneðrÞ (5)

For the exchange and correlation free energy Fxc we have used
the finite temperature expression of [24]. By construction the po-
tentials and electron densities are spherically symmetric.

In orbital based average atom calculations one solves the
Schr€odinger equation for the one-electron orbitals jε(r) at energy ε,
and constructs the electron density with

ne rð Þ ¼ 2
Z∞
�∞

dε f εð Þ
���j

ε
rð Þ
���2 (6)

where fε is the Fermi-Dirac occupation factor

f ðεÞ ¼ 1
expðbðε� mÞÞ þ 1

(7)

and b ¼ 1/(kBT) is the inverse temperature. m is the ideal (non-
interacting) contribution to the electronic chemical potential. The
part of the integral in equation (6) from �∞ to 0 reduces to a finite
summation over all bound states since their density of states are
Dirac delta functions at their eigen-energies [25]. The integral from
0 to ∞ is over the continuum of positive energy states.

The self-consistent procedure for solving these equations is as
follows:

1. Start with an initial guess at the potential Veff(r)
2. Solve the Schr€odinger equation for the orbitals jε

3. Construct an electron density from these orbitals (equation (6))
and vary m until charge neutrality is satisfied (equation (1))

4. Calculate a new potential from this electron density using
equations (3)e(5)

5. Using a linear combination of the new and old potentials as a
new guess for Veff, iterate steps 2 through 4 until the new po-
tential is the same as the old one to within a numerical
tolerance.

Calculation of the electron density with equation (6) requires
searching for bound states and accurately evaluating the integral
over continuum states. The integrand for this latter can be highly
structured and therefore require a large number of energy points
and a sophisticated algorithm to make sure that sharp features are
found and accurately resolved [2].

In the following section it is shown that the electron density can
be evaluated using a Green's function approach which guarantees
that structures in the continuum integration are smooth and slowly
varying and moreover, ameliorates the search for bound states.

3. Green's function formulation

In terms of the one-electron Green's function Gðr; r0; zÞ, the
spherically symmetric electron density is given by Ref. [21].

neðrÞ ¼ �2
p
Im

Z∞
�∞

dz f ðzÞGðr; r; zÞ (8)

where the integral over (complex) energy z is along the real axis,
f(z) is the Fermi-Dirac occupation factor (equation (7)) and the
Green's functions is given by

Gðr; r0; zÞ ¼ �ıp
X
L

Rlðr< ; zÞHlðr> ; zÞYLðrÞY�
Lðr0Þ

4pε0Z
mee4

(9)

Here r and r0 are spatial coordinates, p ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2mez=Z2Þ

q
is the

momentum, L ¼ {l, m} is combined notation for the orbital angular
momentum and magnetic quantum numbers, YL are the spherical
harmonics, and r< ð> Þ ¼ minðmaxÞðr; r0Þ. Rl(r) ¼ Pl(r)/r and
Hl(r) ¼ Il(r)/r, where Pl and Il are the regular and irregular solutions
of the radial Schr€odinger equation (appendix Appendix: A)

"
� Z2

2me

�
d2

dr2
þ lðlþ 1Þ

r2

�
þ Veff ðrÞ � z

#�
PlðrÞ
IlðrÞ

	
¼ 0 (10)

We note that since z is in general complex, so are Pl and Il. The
wave functions Rl and Hl are normalized such that for r � R they
take the field free form, i.e.

RlðrÞ ¼ jlðprÞ � ıphþ
l ðprÞtlðpÞ (11)

HlðrÞ ¼ hþl ðprÞ (12)

where hþ ¼ jl þ ıhl is the spherical Hankel function, jl is the
spherical Bessel function and hl is the spherical Neumann function.
tl is the so-called t-matrix element, defined in appendix Appendix:
A. It is straightforward to show that the Green's function expression
for the electron density (equation (8)) recovers the usual orbital
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