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a b s t r a c t

We compare the predictions of two self-consistent average atom (SCAA) models. One is based on the ion-
sphere (IS) and the other ion-correlation (IC) model applied to the representative plasma ion. We present
shock-Hugoniot calculations for aluminum and molybdenum from zero up to high temperatures and
pressures when relativistic effects are important. We also compare the form factors relevant to elastic
photon scattering and we also present calculations for the emissivity and photoabsorption in hot
aluminum plasma.

� 2013 Elsevier B.V. All rights reserved.

1. Introduction

The application of modern quantum theory in the modeling of
the physics of high temperature plasmas has been around for at
least six decades. First, the ThomaseFermi (TF) and Thomase
FermieDirac (TFD) models were extended to finite temperatures
[1,2] by assuming that the occupation of the phase cells is
determined by the FermieDirac statistics. This assumption is
maintained in the computation of the shell structures predicted
by the TFD potential and this model is appropriately called the
ThomaseFermieDirac Shell model (TFDS) [3]. At a finite tem-
perature the FermieDirac statistics yields non-integer occu-
pancies for the upper shells, therefore the model is not real and it
represents only a statistical average, thus the model is appro-
priately labeled as an “average atom” (AA model). The temper-
atureedensity dependent AA model was extended to a full self-
consistent model analogous to a zero temperature Hartreee
Slater or DiraceSlater model by the author in 1972 [4] and
subsequently a somewhat modified version was presented in
1979 by Liberman [5]. Since then a number of papers have
investigated the mathematical details of the AA model and its
applications and the research is still ongoing, we just give
two important references [6,7]. It should be noted at the onset,
that although the AA model is widely used to calculate Equation-
of-State (EOS) properties, but care has to be exercised to extend
the AA model for the calculation of photoabsorption or emission

in hot plasmas. In the case of high density plasmas the various
broadening mechanisms render the quantum states of the AA
model applicable for the computation of spectral lines and
photoionization. However, for low density plasmas when the
spectral lines are narrow this is no longer valid. In fact, it is
known that for low density astrophysical plasma spectra the AA
model is insufficient and one must apply “detailed configuration
accounting” (DCA) which is more realistic with regard to the
many-electron configurations. In this paper we are concerned
only about the EOS and some radiative properties of high density
plasmas as predicted by the AA model.

We will consider two distinct physical models within the AA
approach.One is the so called “ion-sphere” (IS)modelwhich assumes
that the representative plasma ion is enclosed in a spherical cell
whose radius is determined by the ion density. The representative
plasma ion is neutral within the ion-sphere, all electrons, bound and
free, are contained in the cell. Density effects in the IS model are
governed by the Fermi level of the plasma electrons and also by
boundary conditions imposed on the bound states at the ion-sphere
radius In most published EOS AA papers that the author is aware of,
the IS assumption, or as sometimes called, the WignereSeitz cell
assumption is used. The other, much less used AA model is the “ion-
correlation” (IC) model where allowance is made for the penetration
of neighboring ions into the ion-sphere, thus modifying the electron
potential compared to the IS model. Clearly, the region of interest in
the IC model extends from zero to infinity and the requirement of
charge neutrality for the plasma as a whole is set at infinity from the
central ion. Since the perturbation of the central ion by the neighbors
is a realistic assumption, one would think the IC model is moreE-mail address: rozsnyai9@aol.com.
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appropriate to account for the physics of hot plasmas. In an earlier
paper [8] the author did make a brief comparison of photoionization
based on the IS and IC models, but no detailed EOS properties were
investigated. A critical discussionof the IC versus ISmodelswas given
inapaperbyStarretandSaumon[9] in2012 followedbya subsequent
paper [10] where computed results were presented for the self-
consistent pair distribution functions. The purpose of this paper is
topresentquantitative comparisonsbetween thepredictionsof the IS
and IC AA models.

Wepresent comparisonsof the computed shockHugoniots based
on the twomodels for aluminumandmolybdenum.We also present
calculated form factors relevant to elastic photon scattering and
some calculations for photoemission fromhot aluminum plasma. In
the next sectionwepresent the rudiments of the underlyingmodels
and in Section III we present computed data. We do not wish to
overwhelm the reader with a large set of detailed graphs, sowewill
present only those data which reflect the essential difference be-
tween the two models. For the shock Hugoniots we cover temper-
atures high enough for relativistic features to appear and for this
reason in Appendixwegive a brief discussion of the relativistic virial
theorem and the relativistic TFD model.

2. Theoretical background

A complete set of self-consistent equations for the IS AA model
was given in Ref. [4] long time ago and it was also discussed in
detail in a more recent paper by the author [11] in conjunctionwith
shock Hugoniot calculations. Here we recapitulate the basics and
we treat the IS and IC models in a parallel fashion. The bound and
free electron states satisfy a one-particle equation derivable from a
self-consistent HartreeeSlater or DiraceSlater model.

Hjnljm ¼ 3nljmjnljm (1)

Relativistic effects appear in the high energy continuum states
and also in the deeply bound states inmedium Z to high Z elements.
The Hamiltonian in Eq. (1) is a Dirac Hamiltonian for the two
component wave function and the AA occupancies of the one-
electron states (bound or free) are given by the Fermi statistics
determined by the temperature and Fermi level of the plasma
electrons. The cardinal element is the self-consistent potential (in
a.u.-s) in which the electrons move and is given by

VðrÞ ¼ �Z=r þ VeðrÞ þ VxðrÞ þ VþðrÞ (2)

where r is the distance from the center of the nucleus and Z is the
nuclear charge. The second tem in the right side of Eq. (2) is the
classical part of the potential due to the electroneelectron inter-
action and the third tem is a local exchange potential that we will
discuss later. The last term is due to the penetrating positive
charges from outside of the ion-sphere, and it is absent in the IS
model. The potentials Ve and Vþ are classical in the sense that they
satisfy Poisson’s equation with the respective charge densities as
the source. We assume spherical symmetry, which means that the
wave functions are products of radial parts and spin-spherical
harmonics. The radial parts for the nlj bound states satisfy the well
known coupled Dirac equations

�cZ df
dr � cZ 1�k

r f ¼ �
3� VðrÞ �mc2

�
g

cZ dg
dr þ cZ 1þk

r g ¼ �
3� VðrÞ þmc2

�
f

(3)

where g and f are the “large” and “small” components of the Dirac
spinor and k ¼ �(j þ 1/2); l ¼ j � 1/2) with 3as the energy eigen-
value. For the bound states the normalization conditions must

reflect the fact that the region of interest in the IS and IC models are
different,

Zr0;N0

0

h
g2nljðrÞ þ f 2nljðrÞ

i
r2dr ¼ 1 (4)

where the upper limits r0 and N apply to the IS or IC models,
respectively, and r0 is the ion-sphere radius. In both models the
level occupancies are given by the Fermi statistics

pnlj ¼ 2jþ 1

exp
h�

3nlj � m
�.

kT
i
þ 1

(5)

A fundamental difference between the IS and IC models is
associated with the boundary conditions imposed on the bound
wave functions. In the IS model used in this paper and also in
Ref. [11] the boundary conditions are given at the ion-sphere radius.
The two boundary conditions are that either the wave function or
the gradient must be zero. In the molecular analogy the first con-
dition is reminiscent to an anti-bonding orbital whereas the second
to a bonding orbital. In the solid state analogy the eigenvalues
associated with the two boundary conditions yield a broadening of
the levels into bands and sometimes two bands may overlap, a
feature well known in the ground states of many metals like
aluminum and cesium. The above feature is absent in the IC model,
where the boundary conditions are given at infinity. The IS
boundary conditions together with the band splittings were dis-
cussed in detail in Ref. [11]. It should be noted that the IS model of
Ref. [5] differs from the one used here in the sense that although the
charge density is normalized to the volume of the ion-sphere, but
the boundary conditions for the bound states are given at infinity,
thus no band structures are predicted.

From Eqs. (4) and (5) the bound electron density is

4prbðrÞ ¼
X
nlj

pnlj

�
(6)

The total electron density is of course the sum of the bound and
free densities. We decompose the free electron density into two
parts, the low to moderately high energy electrons are treated with
quantum mechanics and the high energy free electrons are treated
by the relativistic TFD model. This procedure is also discussed in
detail in Ref. [11]; here we just give a brief survey. We have for the
free electron density.

rf ðrÞ ¼ rIf ðrÞ þ rIIf ðrÞ (7a)

with 4prIf ðrÞ ¼ Plmax

l¼0

Pj¼ lþ1=2

j¼ l�1=2

Z3M

0

pljð 3ÞR2ljð 3; rÞd 3 (7b)

and rIIf ðrÞ is given by Eq. (A16) in the Appendix. The requirement on
the upper limit 3

M in the integral is that the partial wave with lmax
has its classical inner turning point outside r. In this paper we give
allowance for lmax not to be larger than 20, but pending on the
density of the plasma it may be less than that. For the energy
computation we need the one-particle energy density associated
with the continuum states of Eq. (7b)

4p 3
IðrÞ ¼

Xlmax

l¼0

Xj¼ lþ1=2

j¼ l�1=2

Z3m

0

pljð 3ÞR2ljð 3; rÞ 3d 3 (7c)

Since Eqs. (7b) and (7c) concern low energy continuum states,
for the function Rlj( 3,r) we use a one-component relativistic
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