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a b s t r a c t

We present calculations of Gaunt factors for freeefree absorption over a wide range of temperatures and
densities. The calculations employ a partial wave expansion approach, which is able to account for
plasma screening within the calculation of the freeefree Gaunt factor. Much of the existing Gaunt factor
data pertains to hydrogenic systems, and plasma screening is often incorporated in opacity calculations
using approximate methods. The use of a more accurate method allows us to determine the accuracy of
such approximations in calculations of the freeefree monochromatic and mean opacities.

� 2013 Elsevier B.V. All rights reserved.

1. Introduction

We present a method to calculate non-relativistic Gaunt factors
for freeefree absorption using a partial wave expansion method.
Previously, the Los Alamos National Laboratory light element
opacity code ATOMIC [1] and its predecessor LEDCOP [2] relied on
the Gaunt factor tables of Nakagawa et al. [3] to calculate freeefree
opacities. These tables list thermally-averaged hydrogenic Gaunt
factors for a given set of photon energies, temperatures and elec-
tron degeneracies, and are derived from a series expansion
approach [4] to the Sommerfeld formula for the differential cross
section for freeefree absorption [5]. In ATOMIC, the table values are
then corrected for plasma screening using an approximate method
developed by J.M. Green [6,7] (referred to as ‘the Green approxi-
mation’). In the new ab initio approach, the non-relativistic freee
free Gaunt factor is calculated using a partial wave expansion,
based on the BREM-IV code also developed by J.M. Green [8,9]. This
method allows the Gaunt factor to be determined at any given
temperature and for any degeneracy. The new approach also pro-
vides an improved treatment of plasma screening, by calculating
the continuum electron wavefunction using a screened potential.
The partial wave expansion method will provide insight into the
degree to which the Green screening correction currently used in
ATOMIC reproduces Gaunt factors calculated using a more rigorous
treatment of plasma screening. In this paper, we make comparison
between the results of the partial wave expansion and those of the
Green approximation. From this comparison we may determine

ranges in temperature, density and photon energy at which
screening plays amajor role. We then examine the effect of the new
freeefree treatment on the Rosseland mean opacity over a wide
range of temperatures and densities for hydrogen and carbon.

In the following section we give a brief overview of the partial
wave expansion method, followed by a description of the theo-
retical approach used in the subsequent calculation of the freeefree
opacity. We present the results from numerous test cases, which
investigate the comparison between Gaunt factors calculated using
the Green approximation with those calculated using the partial
wave method incorporating screening. We then investigate the
sensitivity of the Rosseland mean opacity to the freeefree opacity,
by comparing new calculations with previous opacity data for
hydrogen and carbon [1]. We end with a short conclusion.

2. Theory

2.1. Partial wave expansion for the Gaunt factor

The non-relativistic freeefree Gaunt factor for a plasma of
average ionization Z, an initial electron energy Ei and a photon
energy Zu (in Rydbergs) may be obtained through a partial wave
expansion of the form [8]
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where L is the orbital angular momentum of the continuum elec-
tron wavefunction JL(r,k), and the dipole matrix element
M(ki,Li;kf,Lf) is given (in the acceleration gauge) by

M ki; Li; kf ; Lfð Þ ¼ 1
AiAf

ZN
0

JLi r; kið ÞdV
dr

JLf r; kfð Þdr: (2)

Here, ki and kf are the electron wave numbers of the initial and
final states, Li and Lf are their respective orbital angular momenta,
Ai and Af are their amplitudes, and the continuum electron wave-
function JL(r,k) is given by a Green’s function solution of the
Schrödinger equation [10]

JLðr; kÞ ¼ JLðkrÞ þ
1
k

2
4NLðkrÞ

ZN
0

JLðr; kÞVðrÞJLðkrÞdr

� JLðkrÞ
ZN
0

JLðr; kÞVðrÞNLðkrÞdr
3
5;

(3)

where JL(kr)/kr and NL(kr)/kr are the regular and irregular spherical
Bessel functions, and the potential V(r) is given in a Yukawa form, in
terms of the average ionization Z ¼ ne=ni (where ne and ni are the
electron and ion densities), and screening length l as

V rð Þ ¼ Ze2

r
e�r=l; (4)

where e is the electron charge. The screening length may be
chosen to be the WignereSeitz radius, lWS, given by

lWS ¼ 3
4pni

� �1=3
cm½ �; (5)

or the Debye radius, lD, which (for any degree of electron de-
generacy) is given approximately by

1
lD

¼ 4pe2

kTe

� �1=2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
j

n jð Þ
i Z2jð Þ þ ne 1þ kTF

kTe

� �2
" #�1=2

vuuut ½cm�; (6)

where Z(j) and nðjÞi are the charge and ion density of ion j, kTe is the
electron temperature, and where kTF is the Fermi temperature,
given by

kTF ¼ 2
3

Z2

2me
3p2ne
� �2=3

erg½ �; (7)

where me is the electron mass. When the screening length l

becomes smaller than the WignereSeitz radius, the simple
screening picture presented above becomes questionable. There-
fore, in all calculations presented here, we take the screening
length to be the larger of the Debye and WignereSeitz radii.

2.2. Freeefree absorption opacity

The non-relativistic freeefree Gaunt factor may be averaged
over all electron energies using a FermieDirac distribution and
Pauli blocking factor. The normalized FermieDirac-averaged Gaunt
factor is defined as
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is a Fermi integral, and where the dimensionless quantities x,u,g2

and h are related to the electron energy Ee, photon energy Zu,
temperature kTe, and electron chemical potential me as

x ¼ Ee
kTe

; (10)
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where Ry is the Rydberg unit of energy, given by
2p2e4meh

�2 x 13.6057 eV. The quantity Z2 takes the form
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where nT ¼ P
j
nðjÞi is the total ion density.

For a given ion number density, ni, andmass density, r, the freee
free absorption cross section, sff(u,Te), is given by
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where c is the speed of light, and gff ðg2;u; hÞ is the FermieDirac-
averaged Gaunt factor, defined in Eq. (8). The classical Kramers
formula for the freeefree absorption cross section is given by Eq.
(15) with gff ðg2;u; hÞ ¼ 1. Further modifications incorporating
stimulated emission and the Drude model approximation for
multiple collisions lead to a monochromatic freeefree opacity,
kff(u,Te), with the form [11,12]
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where n(u) is the collision frequency, given by

n uð Þ ¼ c
u2
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and the refractive index n(u) takes the form
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