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A B S T R A C T

We present Dédale, a fast code implementing a simplified non-local-thermodynamic-equilibrium (NLTE)
plasma model. In this approach, the stationary collisional–radiative rates equations are solved for a set
of well-chosen Layzer complexes in order to determine the ion state populations. The electronic struc-
ture is approximated using the screened hydrogenic model (SHM) of More with relativistic corrections.
The radiative and collisional cross-sections are based on Kramers and Van Regemorter formula, respec-
tively, which are extrapolated to derive analytical expressions for all the rates. The latter are improved
thereafter using Gaunt factors or more accurate tabulated data. Special care is taken for dielectronic rates
which are compared and rescaled with quantum calculations from the Averroès code. The emissivity and
opacity spectra are calculated under the same assumptions as for the radiative rates, either in a de-
tailed manner by summing the transitions between each pair of complexes, or in a coarser statistical
way by summing the one-electron transitions averaged over the complexes. Optionally, nℓ-splitting can
be accounted for using a WKB approach in an approximate potential reconstructed analytically from the
screened charges. It is also possible to improve the spectra by replacing some transition arrays with more
accurate data tabulated using the SCO-RCG or FAC codes. This latter option is particularly useful for K-shell
emission spectroscopy. The Dédale code was used to submit neon and tungsten cases in the last NLTE-8
workshop (Santa Fe, November 4–8, 2013). Some of these results are presented, as well as comparisons
with Averroès calculations.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

The modeling of non-local-thermodynamic-equilibrium (NLTE)
plasmas is central for many applications involving high-energy
density physics. This concerns, for instance, integrated simula-
tions of hohlraums in the context of inertial confinement fusion,
the diagnosis of plasma X-ray sources, the estimation of radiative
power losses in the ITER reactor or photoionized plasmas in astro-
physical environments.

Out of equilibrium, the modeling of atomic physics in plasmas
depends closely on the radiation field. In general, radiation trans-
port is coupled to the hydrodynamic motion of matter, so that NLTE
physics must be used in integrated radiation–hydrodynamics simu-
lations. This requires fast but accurate methods. At present, the CEA
radiation–hydrodynamics codes [1] use different kinds of fast inline
NLTE libraries, either based on the NLTE average-atom approach [2,3]
or on the notion of ionization temperatures [4,5]. Though largely
simplified, these models may be rescaled with more accurate data,
for instance from the Averroès code [6,7]. The increase in power of
supercomputers nowadays allows one to include more and more

complexity in integrated NLTE models. The Dédale code, under de-
velopment, is an approach similar to models like FLYCHK [8] or DCA-
Cretin [9]. The collisional–radiative model determines the NLTE
populations of ground and excited states belonging to different ion
stages in the plasma. In this framework, it is easier to account for
dielectronic processes and electron–electron correlations in NLTE
calculations, which are crucial for a realistic ionization balance and
for spectra.

The collisional–radiative model on which the Dédale code relies
is presented in Section 2. The plasma is viewed as a neutral col-
lection of non-interacting ions and free-electrons. The binding-
energy levels of the ions are treated statistically and estimated using
the screened hydrogenic model of the atomic structure described
in Section 2.1. In more realistic models, interactions among the ions
and the free-electrons can lead to pressure ionization of the ions.
In order to account for this phenomenon in a crude way, we correct
the atomic structure model as described in Section 2.2. The popu-
lations of the different species are linked by physical processes and
can be obtained either from the thermodynamic equilibrium (under
the local thermodynamic equilibrium assumption, i.e. LTE) or from
the collisional–radiative equations (CRE) when the plasma is out
of equilibrium with the radiation field. In this last case, we solve
the master equations given in Section 2.3, and therefore the rates
of all relevant processes are obtained using the formula of Section
2.4. Given the populations it is then possible to calculate
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the radiative properties of the plasma using the approach of
Section 2.5.

In Section 3, results of the present model are compared with
Averroès calculations on some low-, medium- and high-Z plasma
cases. We then draw some preliminary conclusions.

2. Presentation of the Dédale model

2.1. Atomic structure modeling

We use a statistical approach based on Layzer complexes, i.e.
superconfigurations with supershells gathering all orbitals with the
same principal quantum number (up to n = 10):

C = ( ) ( ) ( ) ( )1 2 2 3 3 3 10 10 101 2 3 10s s p s p d s p mP P P P… … (1)

The occupation number Pn of shell n can vary from 0 to the shell
degeneracy 2n2. The calculation uses a list ranging from a few hun-
dreds up to several tens of thousands of complexes, depending on
the user’s need as regards the computation time. Ground com-
plexes are first set up for each ion charge state. They are then used
to generate automatically the excited complexes by moving one or
more electrons to higher shells according to several parameters and
criteria.

All levels or configurations within the same complex are con-
sidered to be in LTE at a temperature much higher than the energy
spread of the complex (statistical weigth approximation). Only tran-
sitions involving different shells participate in the kinetic equations
(see Section 2.3). The total energy of complex C is approximated
using the screened hydrogenic model (SHM) as
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where the expression for the energies ε κn (<0) follows the exact so-
lution of the Dirac equation for hydrogenic atoms,
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in which the nuclear charge Z has been replaced by the effective
charge Q n C[ ] seen by the electrons in shell n of complex C . R is
the Rydberg energy and α is the fine-structure constant. The ef-
fective charges are evaluated using the screening factors σn n, ′ of More
[10] as

Q Z P Pn n n n n n n
n n
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This expression accounts for the screening by inner electrons only
(n′ < n) and includes a correction to avoid electron self screening,
as mentioned in Ref. 11 to obtain a better accuracy for hydrogenic
atoms.

Under the assumption that free electrons form a non-interacting
partially-degenerate gas in local thermodynamic equilibrium, their
density is given by the formula
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where k is the Boltzmann constant, h is the Planck constant, m is
the electron mass, μ is the chemical potential and F x1 2[ ] is the Fermi-
integral of order 1/2. The chemical potential μ is determined by
assuming charge neutrality for the overall plasma, n Zne = ion , where
nion is the number of ions per unit volume. The plasma mean ion-
ization is defined as:
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where Z Z Pn nC C= − ∑ [ ] is the charge state of the Layzer complex
C and NC its population. The populations of the complexes are com-
puted either from the thermodynamic equilibrium condition or using
a collisional–radiative approach detailed in Section 2.3.

2.2. Density effects

To mimic the pressure–ionization effects on bound states and
their progressive delocalization, the degeneracy of shell n is grad-
ually reduced as the ion density increases [12]:

g nn n= [ ]2 2Λ ρ (7)

The total degeneracy of complex C is evaluated as

g g Pn n
n

C = [ ]∏Θ , (8)

using a modified binomial function which reads:
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where Γ[x] is the Euler gamma function. The parameter an is a real
positive number which controls the progressive disappearance of
shell n. Simultaneously, ionization-potential lowering is taken into
account by adding a positive density-dependent contribution to the
total energy of complex C :

E E P En n
n

C C C→ + [ ] [ ]∑  δ ρ (10)

To speed-up the calculations, complexes may be removed from
the collisional–radiative modeling if its degeneracy is considered
to be sufficiently small.

The simplest approach is to express Λn[ρ] and δEn[ρ] as a func-
tion of the parameter Rn/R0, where Rn is the mean radius of shell n,
R n0

3
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is the Wigner–Seitz radius, n N Aaion = ρ is the ion
density (with the Avogadro number Na and the ion mass A). Indeed,
it is expected that Λn → 1 and δEn → 0 when Rn ⪡ R0 (no density
effects), and that Λn → 0 when Rn ⪢ R0 (delocalization of shell n).
Many options are available in the code, based on various formulas
found in the literature (see for instance Refs. 13–15).

We compare in Fig. 1 the Al 20 eV-isotherm mean ionization
obtained using Dédale to that stemming from the well-known
Inferno Ion-in-Cell Average-Atom model [17]. The latter calcula-
tion uses the following definition of the mean ionization:
Z Z Pn n= − ∑ , ,� � , where Pn,� are the LTE fractional subshell occupa-
tion numbers. This last definition is similar to Eq. (6) and leads to
the characteristic step features corresponding to closed shell ions
(Ne-like, He-like).1

As can be seen, with the Dédale model, LTE is reached along this
isotherm around 10 3− g.cm−3 matter density. The pressure ioniza-
tion also occurs starting from a few 10 3− g.cm−3 and the Dédale
calculations with degeneracy reduction yield in this region the qual-
itative behavior of increasing mean ionization.

1 Using Inferno with the definition of the mean ionization based on the chemi-
cal potential, i.e. that used in the Thomas–Fermi model lead to a much smoother
curve, close to that from the Thomas–Fermi model.
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