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a b s t r a c t

Exact or statistical methods for determining the distribution of the MJ values (projection of total angular
momentum J) in an electron configuration are presented. This distribution, noted P(MJ), is used to
calculate the allowed values of J and the number of electric-dipolar (E1) lines between two configura-
tions. First, the difficulty to account for the Pauli exclusion principle for equivalent electrons is stressed.
Showing the limit of the usual exact approach, a very efficient recursive technique is proposed for
determining exactly the distribution P(MJ). Second, the statistical approach of Bauche and Bauche-
Arnoult [J. Phys. B Atom. Mol. Opt. Phys. 20 (1987) 1659] is extended in order to account for configu-
rations with a high-[ spectator. In this case, identical consecutive values may exist in the center of P(MJ),
which can neither be modeled by a Gaussian nor by a Gram–Charlier type function. It is shown that the
Generalized Gaussian function, with the exponent constrained by the kurtosis (reduced fourth-order
centered moment) of P(MJ), is more suited in these situations. A new analytical formula for the evaluation
of the number of E1 lines with a larger range of applicability is then proposed.

� 2009 Elsevier B.V. All rights reserved.

1. Introduction

The conservation of angular momentum is an important
concept in physics, which is closely related to the rotation
symmetries of a system, free of any external torque. In quantum
physics, the total angular momentum J of an isolated ion is also
a constant of motion, meaning that its projection MJ upon
a particular axis is quantized in 2Jþ 1 values: – J�MJ�þ J. The
study of the allowed values of J (or MJ) in quantum states of the ion
is of great interest because it plays a role in many concrete prob-
lems of atomic physics. For instance, the number of multipolar lines
between two configurations is directly linked to the number of J
levels in both configurations. Such quantity is obviously important
in calculating the opacity coefficient of hot plasmas. The number of
E1 lines is a crucial input of the Resolved Transition Array (RTA)
model [1,2], which simulates a detailed-line treatment in a statis-
tical manner. In mixed statistical and detailed models [3,4], the
number of levels or lines can be used as a criterion in order to
decide whether to calculate the spectra with statistical approaches,
such as Unresolved Transition Array (UTA) [5] or Super Transition
Array (STA) [6], or with detailed line-by-line atomic structure
codes. From a practical point of view, the number of levels with

a fixed J value in a configuration determines also the size of the
Hamiltonian submatrices in most atomic structure codes (for
instance in Cowan’s code [7]). The determination of these dimen-
sions enables one to estimate the complexity of a calculation, and to
extend arrays in the code at the right size if necessary.

Another interest of such study is the calculation of averages for
operators which depend only on total angular momenta. The trace
of such operators over all jaJ) levels can be simplified and evaluated
more easily if the distribution of angular momenta is known. For
instance, considering the operator J

!2, one has

X
aJ

�
aJ
��� J
!2
���aJ
�
¼
X

J

JðJ þ 1ÞQðJÞ; (1)

where Q(J) is the number of J levels in the configuration. This
averaging technique can be generalized to operators which depend
on more angular momenta by calculating the corresponding
degeneracy. For the Zeeman operator, Hz ¼ B

!
m0ð J
!þ ðgs � 1Þ S

!
Þ,

with S
! ¼

P
i

s!i, one must determine the number of levels jg(SL)J)
having the same set of values (S, L).

In the first section, exact methods for determining the distri-
bution of the discrete MJ (and J) values in configurations are pre-
sented. Showing the usual exact method can be time consuming in
the case of equivalent electrons, a more efficient approach based on
recursion relations is proposed. In the second section, the study is
performed in a statistical framework. It is shown that a continuous
representation of the MJ values based on the Generalized Gaussian
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function is better suited than the Gram–Charlier expansion series,
in particular for configurations having a plateau in the center of this
MJ distribution. For that reason, a new compact formula for esti-
mating the number of electric dipolar lines between two configu-
rations is suggested, with a larger range of applicability and an
overall better accuracy.

2. Rigorous methods for the study of the total
angular momentum

2.1. Generalities

The total angular momentum J
!

of the ion is the addition of the
intrinsic angular momenta of each electron:

J
! ¼

X
i

ð s!i þ [
!

iÞ; (2)

where s!i ðsi ¼ 1=2Þ and [
!

i are respectively the spin and orbital
angular momenta of the ith electron. The one-electron states of the
ion are defined by j[im[i simsi Þ, where m[i (such that
�[i � m[i � þ[i) and msi (such that �1=2 � msi � þ1=2) are
projections of [i and si respectively. Multielectron states of the ion
are represented by jaJMJ), where a is an additional set of quantum
numbers that describes the way the one-electron states are coupled
to give a particular value of J and of its projection MJ. Because the
total energy of the ion is independent of the MJ values, it is useful to
introduce the (2Jþ 1)-degenerated level noted jaJ).

From now, the notation Q(J) (or P(MJ)) is introduced to represent
the number of levels (or states) having in common the same value
of J (or MJ). The study of the distribution of quantum number J in an
atomic system is somewhat cumbersome because it is the eigen-
value of no simple operator. But more important, there is no simple
rule on J to account for the Pauli exclusion principle in configura-
tions with more than two equivalent electrons. It is usually more
comfortable to study the distribution of the projection MJ of J,
because MJ is the eigenvalue of the one-electron operator Jz and is
thus additive with respect to the magnetic quantum numbers of all
the electrons:

MJ ¼
X

i

ðmsi þm[iÞ (3)

The Pauli exclusion principle can be handled through the combi-
natorics, by searching for all the possibilities to populate the one-
electron states. In addition, it is possible to deduce the distribution
Q(J) from the P(MJ) by using the following relation [8]:

QðJÞ ¼
XJþ1

MJ ¼ J

ð�1ÞJ�MJ P
�
MJ
�
¼ PðJÞ � PðJ þ 1Þ; (4)

and vice versa

P
�
MJ
�
¼

X
J�jMJj

QðJÞ: (5)

Obviously, the normalization of both distributions requires

XþMmax

MJ ¼�Mmax

P
�
MJ
�
¼

XJmax

J¼ Jmin

ð2J þ 1ÞQðJÞ ¼ gc; (6)

where gc is the degeneracy of the configuration of interest. The
extreme allowed values of MJ or J are defined in the next section.
Because the distribution of the MJ values is symmetric, the study
can be restricted to positive values:

P
�
MJ
�
¼ �P

�
�MJ

�
: (7)

2.2. Extreme values of MJ or J in a configuration

In order to determine the largest value of MJ, it is convenient to
sort the values mj¼msþm[ of the one-electron states by ascending
order. Numbering the one-electron states of [1 from k¼ 1 to
k¼ 4[þ 2, the following formula is proposed:

mk ¼
2k� 4[� 3þ ð�1Þk

4
for 1 � k � 4[þ 2: (8)

Now, the largest value of MJ in the subshell [N is determined by
summing the last N values of mk:

X4[þ2

k¼4[þ3�N

mk ¼
1
8

h
2Nð4[þ 2� NÞ þ 1� ð�1ÞN

i
(9)

For an arbitrary configuration of the type c ¼ [N1
1 [N2

2 .[Nw
w , the

largest value of MJ is simply the sum of the maxima in each
subshell:

Mmax ¼
1
8

Xw
i¼1

h
2Nið4[i þ 2� NiÞ þ 1� ð�1ÞNi

i
(10)

The minimum positive value of MJ (noted Mmin>0) depends on the
even or odd number of electrons in the configuration. For an even
number, the electrons can be arranged by pairs with opposite
values of mj: the minimum value is zero. For an odd number, the
previous arrangement plus one electron with mj¼ 1/2 gives
a minimum value of one half. Finally

Mmin>0 ¼
1
4

�
1� ð�1Þ

Pw

i¼ 1
Ni

�
(11)

The largest value of J is obviously that of MJ due to Eq. (4),
because Q(Mmax)¼ P(Mmax) and Q(Mmaxþ 1)¼ 0. Thus

Jmax ¼ Mmax: (12)

The minimum value of J is more cumbersome to determine,
because it depends on the type of the configuration. For instance,
considering the case [1 or [4[þ1, the result is Jmin¼ [� (1/2). For an
open subshell [N with N> 1 and N< 4[þ 1, we have Jmin¼Mmin>0.
More generally, for configurations which contain several open
subshells with at least one subshell [1 (or [4[þ1) with a very large
value of [, the minimum value of J is between Mmin>0 and [>� (1/2)
([> is the largest value of the orbital momentum for the electrons).
This issue comes from the fact that identical consecutive non-null
values (a ‘plateau’) may exist in the center of the distribution P(MJ)
for some configurations (e.g. 3p26h1):

PðMmin>0Þ ¼ PðMmin>0 þ 1Þ ¼ /PðJminÞs0: (13)

The use of Eq. (4) gives Q(Mmin>0)¼Q(Mmin>0þ1)¼/
¼Q(Jmin� 1)¼ 0, and Q(Jmin) s 0. The length of the plateau in P(MJ)
(if it exists) thus determines the minimum value of J. This problem
of great importance will be discussed in more details in the section
related to the statistical approach.

2.3. Case of configuration [N

As mentioned previously, the difficult part consists in finding
the distribution of MJ (or J) values for equivalent electrons. A simple
way of doing that in [N can be found in atomic physics books. This
academic method consists, first, in determining the 2(2[þ 1)
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