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a b s t r a c t

A method for efficient generation of spectra using line-by-line approaches is presented. The only
approximation is replacing the line shape function with an interpolation procedure, which makes the
method independent of the line profile functional form. The computational savings for a large number of
lines is proportional to the number of frequency points in the spectral range. Therefore, for large-scale
problems the method can reduce the operation count by several orders of magnitude.

� 2011 Elsevier B.V. All rights reserved.

1. Introduction

Calculations of spectra using line-by-line methods can entail
large computational efforts [1]. That is, the boundebound spec-
trum at photon energy Zu is the sum of all the spectral lines
weighted by their strength,

IðuÞ ¼
X
a

IaðuÞ (1.1)

IaðuÞ ¼
XNa[

k¼1

sakfaðu� nakÞ (1.2)

where each a represents a group of Nal lines having the same
normalized profile fa(x) with sak and nak the strength and center of
the kth line in the group, respectively. For example, in opacity
calculations a line group typically consists of a configuration-to-
configuration transition array where all the lines within the array
are assigned the same profile [2].

The operation count to compute Ia(u) directly from Eq. (1.2)
given the atomic data is

NIafO
�
Na[NuNf

�
(1.3)

where Nu is the number of frequency points and Nf the number of
operations to evaluate f at a given frequency. Since Nfz10 even for

the simple Lorentz profile, Nu ¼ 103e4 is typically required in
opacity calculations, and configuration-to-configuration transition
arrays in low- to mid-Z elements can often have Nl ¼ 105e6, eval-
uation of Ia(u) can take considerable computational effort [1]. Thus,
efficient algorithms to generate the spectrum are welcome.

The purpose here is to present a procedure previously imple-
mented in the TOPAZ opacity code [2] that is significantly faster
than the explicit calculation of Eq. (1.2) and may benefit the
growing number of efforts performing line-by-line calculations.

2. Method

The proposed procedure to generate spectra for myriad lines
with identical profiles can be separated into three steps: interpo-
lation, line accumulation, and convolution. It is assumed that the
spectrum is to be computed on a uniform frequency mesh {ui} with
uiþ1 � ui ¼ h for all i.

2.1. Interpolation

The first step is to replace explicit evaluation of the profile by
interpolation, which is computationally faster and does not signifi-
cantly impact accuracy. When many interpolations with the same
data set and different arguments must be carried out, the Newton
polynomial proves efficient. The line profile and divided-differences
are computedonauniformdetuningmesh {xj} (frequencymeasured
from line center, xo ¼ 0) with xjþ1 � xj ¼ h for all j. Then the inter-
polation for the profile at detuning x is given by [3]
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fðxÞ ¼fð0Þ�xj�þDkf
ð1Þ�xj;xjþ1

�þDkðh�DkÞfð2Þ�xj;xjþ1;xjþ2
�þ/

(2.1.1)

where the divided-differences are obtained from the recursion
formulas

fðnÞ�xj;.;xjþn
�¼

(
fðxÞ; n¼ 0
fðn�1Þ½xjþ1;.;xjþn��fðn�1Þ½xj;.;xjþn�1�

xjþn�xj
; n�1

(2.1.2)

the kth line center displacement from the grid points is

Dk ¼ x� xj (2.1.3)

the index j is defined by

xj � x < xjþ1 (2.1.4)

and only terms through second-order were included with the
group index a suppressed.

2.2. Line accumulation

The second stepmakes no approximation and involves replacing
the sum over lines by a sum over frequencies effectively accumu-
lating the lines. Substitute the results of Section 2.1 into Eq. (1.2) at
the grid points fuig to obtain for a given line group

IaðuiÞz~IaðuiÞ ¼
PN[

k¼1
sk
n
fð0Þ�ui�uj

�þDkf
ð1Þ�ui�uj;uiþ1�uj

�

þDkðh�DkÞfð2Þ�ui�uj;uiþ1�uj;uiþ2�uj
�o

ð2:2:1Þ
where now the line center displacement and frequency index j are
given by

Dk ¼ uj � nk (2.2.2)

uj�1 < nk � uj (2.2.3)

A pictorial representation of the interpolation scheme leading to
Eq. (2.2.1) is shown in Fig. 1 for the kth line. In effect, the interpo-
lating profile is shifted so that the line center, f(0), coincides with
the kth line center. The interpolated value at photon frequency ui is
obtained using the appropriate segment of the Newton polynomial
corresponding to detuning x ¼ ui � nk.

It is possible to write the sum over lines in Eq. (2.2.1) as a sum
over frequency points by noting that for a given j all the lines that
satisfy Eq. (2.2.3) involve the same f(n) coefficients. Thus, Eq. (2.2.1)
can be exactly rewritten as

~IaðuiÞ ¼
PNu

j¼1

n
S0
�
uj
�
fð0Þ�ui�uj

�þ S1
�
uj
�
fð1Þ�ui�uj; uiþ1�uj

�

þS2
�
uj
�
fð2Þ�ui�uj; uiþ1�uj; uiþ2�uj

�o
ð2:2:4Þ

where the accumulated quantities are defined by

S0
�
uj
� ¼

XN[

k¼1

0sk; (2.2.5a)

S1
�
uj
� ¼

XN[

k¼1

0skDk; (2.2.5b)

S2
�
uj
� ¼

XN[

k¼1

0skDkðh� DkÞ (2.2.5c)

and
P0 denotes a restricted sum so that j satisfies Eq. (2.2.3)

otherwise Sn(uj) ¼ 0.

2.3. Convolution

The final step recognizes the expression in Eq. (2.2.4) as the
discrete convolution of the functions Sn and f(n). In terms of indices,
Eq. (2.2.4) is symbolically written as

~IaðiÞ¼
XNu

j¼1

n
S0ðjÞfð0Þ½i�j�þS1ðjÞfð1Þ½i�j�þS2ðjÞfð2Þ½i�j�

o
(2.3.1)

and can be efficiently performed using fast Fourier transform (FFT)
methods [4].

2.4. Operation count

The calculation of Ia(u) with the proposed method requires
O(NuNf) operations to compute the profile and divided-differences
on the detuningmesh. The line accumulation is performed by going
through the group line list, determining for each line the j index
satisfying Eq. (2.2.3) (simple arithmetic for a uniform mesh), and
adding the line contribution to the accumulated quantity at index j.
Therefore, the line accumulation in Eq. (2.2.5) is O(Nl) operations.
Although explicit convolution is OðN2

uÞ , taking advantage of the FFT
methods makes it OðNulog2NuÞ [4]. All together the operation
count to evaluate Ia(u) with the present method is then

NFFT
Ia zOðN[Þ þ OðNulog2NuÞ þ O

�
NuNf

�
(2.4.1)

Comparing the results in Eqs. (1.3) and (2.4.1) yields the ratio

NIa

NFFT
Ia

z
O
�
N[NuNf

�
OðN[Þ þ OðNulog2NuÞ þ O

�
NuNf

� /
N[>>Nu

OðNuÞ

þ O
�
Nu

N[

	
(2.4.2)

which for Nu << N[ is O(Nu) leading to large computational
savings.

3. Example

An example is presented to illustrate the method. The line group
is assumed to have 3 lines and Ia(u) is evaluated on 6 uniformly

Fig. 1. Interpolation using Newton divided-differences for a line with strength, center,
and displacement denoted by sk, vk, and Dk.
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