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a b s t r a c t

A method is presented for accurate calculation of equation of state (EOS) for warm dense matter. The
method extends an approach presented recently, based on the adjustment of the correlation energy to
impose consistency between two pressure representations: the volume derivative of the free energy and
the relativistic virial theorem. In this work we show that the free energy of any neutral system obeys
a fundamental differential equation, which bypasses the correlation specifics and serves as a basis to
enhance EOS approximations. Specifically, we start with LDA calculations and improve the results
significantly using this equation with a boundary condition at the zero pressure point. The method
retains the emphasis on thermal excitations, but connects to the appropriate results at low temperatures.
It effectively compensates for simplifications, including the use of a spherical model to account for global
solid structure effects. EOS and opacities are calculated on the same footing for low to high Z elements
and in large domains of density and temperature without recourse to parametric fitting procedures.
Excellent agreement is obtained with experiments. Finally the method is applied successfully to calculate
EOS and opacities for mixtures. Results for C–H mixture are compared with other calculations.

� 2009 Elsevier B.V. All rights reserved.

1. Introduction

Accurate equations of state (EOS) have become a crucial
requirement for reliable simulations of laser-produced plasmas,
inertial confinement fusion, astrophysics, planetary physics, and
many other topics at the forefront of high energy density physics
research [1]. Of particular interest are strongly coupled systems of
partially ionized fluids at extremely high pressure and density [2],
for which modeling becomes very difficult. In addition, for simu-
lating the evolution of a system along experimental Hugoniot
curves one requires accurate EOS in conditions ranging from
normal density, r0, to several times r0 and from room temperature
to thousands of eV. To cope with these broad conditions, we need
theories that emphasize thermal excitations [3,4], but which make
contact with the proper results at low temperatures, like QEOS [5].
In addition, consistency requires that the same tools should be
applicable for opacities and EOS, which are both essential compo-
nents for simulations. For this purpose, we employ theories [4] that
include detailed shape resonances (intermediate bound –
continuum states) in a plasma environment, and use the well-
known muffin tin spherical model [4]. This approach involves
density functional simplifications where the local density

approximation (LDA) and its improvements, are used to incorporate
exchange and correlation energies as explicit local density terms
[6,7]. Whereas this theory reproduces the general properties of
experimental data, the unavoidable use of approximations generate
inaccuracies with some violating thermodynamic consistency and,
therefore, require corrections to match observations. In practice,
corrections to obtain agreement with experimental data rarely
avoid empirical fits. A calibration, developed by More et al. [5]
within a Thomas–Fermi (TF) model, works quite well in general, but
uses a semi-empirical formula to improve the expression
describing the bonding between atoms. Other methods that avoid
empirical fits, e.g. Wang et al. [8], emphasize low temperature
details but ignore the particulars of thermal excitations. To address
this challenge we have recently presented the LCR approach [9]
that is based on two pressure representations: one applies direct
differentiation of the free energy P ¼ �ðvF=vVÞjT and the other is
obtained from the relativistic virial theorem that has a uniquely
useful form. In Ref. [9] we imposed equality between the two
representations by adjusting the correlation energy and obtained
agreement with experiments. However, this approach required
assumptions on the specific form of the correction to the correla-
tions as a functional of the local density. In the present work we
bypass the specifics of the correlation energy and use a more
general approach.

Explicitly we connect here the two pressure representations to
obtain a differential equation for the free energy that is applicable
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for any Coulombic neutral system. This equation determines the
free energy from the lower component contribution to the electron
density. Using the LDA electron density in this equation together
with a proper boundary condition dramatically improves the EOS
LDA results. Specifically the equation improves the LDA EOS
dependence on the density while the boundary condition is
employed to encompass solid structure effects that are ignored in
the LDA. The model is valid over a very wide range, as will be
demonstrated by various examples. In addition, it is shown that the
method is applicable for mixtures.

The essentials of this approach and the notation will be given in
Section 2. In this sectionwe also describe briefly the LDA and INFERNO
models as the basis of our practical calculations. In Section 3 we
present the LDA virial theorem and LDA results. The differential
equation for the free energy and the pressure is introduced in Section
4 where we illustrate its use to enhance the LDA results. In this section
we also describe the procedure taken to use this approach for
mixtures. Summary and discussion are given in Section 5.

2. Theoretical review

2.1. The relativistic virial theorem

Vast areas in physics research deal with Coulombic systems that
are comprised of nuclei (a, b .) and electrons (i, j .) where the
potential energy operator in the Hamiltonian H¼ Kþ V is

V ¼ e2
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The kinetic energy operators K in the Schrodinger and the Dirac

theories are respectively KS ¼ �
P

s
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where, in terms of the Dirac matrices a and b, TD ¼ c
P
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msðb� IÞs and s runs over all (i, a) particles.

The quantum mechanical virial theorem [9–13], which applies
to all special cases (atoms, molecules, solid state, plasma etc.), can
be stated as follows (for details see Appendix).

If a system contained in a volume V is Coulombic and has no
external forces, the system energy in the state k, defined by
Hjk¼ 3kjk, is

Ek ¼ EkðVÞ ¼
ZV

0

j*
kHjk ds¼ 3kNk : Nk ¼ NkðVÞ ¼

ZV

0

jjkj
2 ds; (2)

and the virial theorem reads
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kðT þ VÞjk dsþ dk; (3)

where the integrations
R

ds is over all particles coordinates.
In Eq. (3) ThTS ¼ 2KS or ThTD ¼ c
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tivistic or relativistic theory respectively, and dk ¼ Sk þ 3kðvNk=vVÞ
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For bound states that are practically confined in V, H is Hermitian
and Sk¼ dk¼ 0 for any operator A yielding vEk=vV ¼R V

0 j*
kðT þ VÞjk ds ¼ 0.

If, in addition, the system is subject to external forces represented
by a potential Vext, the resulted pressure on the system becomes

� vEk

vV
¼ 1

3V

ZV

0

j0
�

k ðT þ VÞj0k dsþ dk; (5)

where Ek ¼
RV

0 j0
�

k Hj0k ds in terms of the eigenstates j0k of
H0 ¼Hþ Vext and dk depends on Vext, see Appendix for details. Eq.
(5) was obtained with dk ¼ 0 in several special cases [10–12] where
the external forces are introduced as boundary conditions on the
surface of V, or when it applies to a fully variational treatment [13a].
We will see in practical calculations that the thermal average of dk is
relatively small and can be indirectly calculated. Eqs. (2)–(5) also
apply in the realistic approximation where the nuclei are static. In
this case the various quantities and the wave functions relate to the
electrons alone and the ionic contributions are modeled and added
separately.

In this work we focus on plasmas in thermal equilibrium. Eq. (5),
for the electronic part, needs to be averaged over all states with
their Boltzmann populations [10–13], fk ¼ expð�ðEk � Nm=kTÞÞ=U
normalized by the partition function U, where N is the number of
electrons and m is the chemical potential.

In the differentiation of the average energy Eh
P
k

fkEk we use

the fact that with temperature, T, as the independent variable

�ðvE=vVÞ ¼ �ðvF=vVÞjT , where F¼ E� TS is the free energy with

the entropy S ¼ �
P
k

fkln fk. We then obtain

PF ¼ Pv þ hdiV; (6)

where PF ¼ �ðvF=vVÞ is the basic thermodynamic definition of the
pressure and
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is the ‘ virial pressure’ obtained as an expectation value with no
differentiation (see Appendix). It can be easily verified that bound
states, which are confined in V, do not contribute to Eq. (7). The
major contributions to the pressure come from bound states that
extend significantly beyond the surface of V and from semi-bound
resonance states that are localized and cross beyond V. For these
states, as for all continuum states that are all included in Eq. (7), the
deviations from Hermiticity in V appear in CdDV. As we shall see, due
to internal offsets, CdDV is relatively small and is easily incorporated,
indirectly, as an adjustment to Pv.

In the Dirac theory we have the fortunate fact that only first
order derivatives appear in the Hamiltonian so that in the virial
theorem T¼ TD with no factor 2 as in the non-relativistic case. This
allows an ‘energy representation’ [9] of the virial pressure:
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where HD¼ TDþVþ c2B is the Dirac Hamiltonian of the system and

(in atomic units) B ¼
P

iðb� IÞi ¼
P

i
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where 0 and I are

the 2� 2 zero and unity matrices, respectively. In this case the
electronic states jk >¼ j0kðr1; r2;.rNÞ, in all the equations above,
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