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a b s t r a c t 

Water ice near the surface of main belt asteroids is gradually lost to space. A mantle of low thermal 

conductivity causes large surface temperature amplitudes, and thus increased cooling by thermal re- 

radiation, lowering temperatures well below the fast-rotator limit. A computational barrier for model- 

ing this ice loss is the multi-scale character of the problem: accurate temperatures require many time 

steps within a solar day, but ice retreats slowly over billions of years. This barrier is overcome with asyn- 

chronous coupling: Models of temperature, ice loss, and impact stirring each use their own time steps 

and are coupled with one another. The model is applied to 1 Ceres and 7968 Elst-Pizarro. On Ceres, ice 

can be expected in the top half meter poleward of 60 ° latitude on both hemispheres, even if excursions 

of the axis tilt took place, and even in the presence of impact gardening. At the poles, ice can be expected 

within a centimeter of the surface. The retreating ice crust leads to emission of water from the surface, 

mainly at the equator; the gradually retreating ice supplies a water exosphere less dense than has been 

observed by the Herschel telescope. For Main Belt Comet Elst-Pizarro, depths to ice depend on the prop- 

erties of the surface mantle. For a dust mantle estimated depths are on the order of a decimeter; for a 

rocky surface the depth at the pole is on the order of one meter. Hence, it could have been activated by 

a small impact that exposed buried ice. 

© 2016 Elsevier Inc. All rights reserved. 

1. Introduction 

Water ice may reside near the surface of main belt asteroids. 

For example, dwarf planet Ceres is thought to have an icy man- 

tel ( McCord et al., 2011; Rivkin et al., 2011 ). Fanale and Salvail 

(1989) have studied the rate of ice loss from Ceres with a detailed 

temperature and vapor diffusion model. And Prialnik and Rosen- 

berg (2009) have modeled the evolution of ice in main belt c omet 

7968 Elst-Pizarro. 

On an atmosphereless body the temperature difference be- 

tween its dayside and night side can be large. A mantle of low 

thermal conductivity causes large surface temperature amplitudes, 

and enhances radiative cooling, because the time average of T 4 is 

significantly larger than the 4th power of the time-averaged tem- 

perature. This nonlinearity effect lowers the body’s mean tem- 

perature ( Schorghofer, 2008 ). Fig. 1 shows the mean surface 

temperature at the equator of a spherical body with zero axis 

tilt as a function of thermal inertia. The thermal inertia of Ceres 

is estimated as ∼15 J m 

−2 K 

−1 s −1 / 2 ( Lebofsky et al., 1986; Rivkin 

et al., 2011; Spencer, 1990 ), consistent with a mantle of dust-sized 

∗ Tel.: +1 808 956 0982. 

E-mail address: norbert@hawaii.edu 

particles. Due to this very low thermal inertia, the mean temper- 

ature is about 20 K lower than for the fast rotator model that as- 

sumes temperature at each latitude is independent of local time. In 

terms of sublimation rate (or vapor pressure), 20 K correspond to 

two orders of magnitude (!) difference. Hence, to accurately deter- 

mine desiccation rates, at any depth, it is crucial that the diurnal 

temperature variations be resolved. 

The multi-scale character of the problem leads to a computa- 

tional barrier for modeling the ice loss: accurate temperatures re- 

quire many model time steps within a solar day, but ice retreats 

slowly over billions of years. This barrier can be overcome with 

“asynchronous coupling” between a thermal model and an ice evo- 

lution model. This makes it feasible to integrate the retreat of the 

ice over billions of years using rotationally resolved temperatures. 

A similar asynchronous numerical method was developed for mar- 

tian subsurface ice by Schorghofer (2010) . 

As is well-known from the lunar surface, small impactors gar- 

den or stir the uppermost surface ( Heiken et al., 1991 ). On icy 

bodies, this impact stirring may devolatilize the surface. In addi- 

tion, stirring/gardening may smooth an otherwise abrupt transition 

from a dry surface layer to an ice rich layer (ice table). Impact stir- 

ring is also implemented in the model, and this component uses 

its own time step as well. Hence, there is asynchronous coupling 
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Fig. 1. Maximum, minimum, and mean temperature experienced over a solar day at 

the equator of a body with the orbit of Ceres. The nonlinear horizontal axis is ther- 

mal inertia; infinite thermal inertia corresponds to the fast rotator model, and zero 

thermal inertia corresponds to an instantaneous equilibrium between insolation and 

surface temperature. At high thermal inertia (rocky mantel), mean temperature is 

well approximated by the fast rotator model. At low thermal inertia (dust mantle), 

mean temperature is significantly lower than in the fast rotator approximation, due 

to enhanced amplitude-dependent radiative cooling caused by night-day surface 

temperature variations. Ceres has an estimated thermal inertia of 15 J m 

−2 K −1 s −1 / 2 . 

between three types of models. Ordered by increasing time step, 

they are: thermal, impact stirring, and ice evolution. 

The model is applied to two main belt bodies that are of cur- 

rent interest: Dwarf planet 1 Ceres, that the Dawn spacecraft has 

begun to orbit in 2015 ( Russell and Raymond, 2012 ), and 133P/Elst- 

Pizarro, the best studied of the Main Belt Comets. For Ceres, the 

H-content in the uppermost decimeters will be measured by the 

Gamma Ray and Neutron Detector (GRaND) on board the Dawn 

spacecraft ( Prettyman, 2011 ). 

2. Numerical method 

2.1. Thermal model 

The temperature on and near the surface is determined by the 

surface energy budget. This energy balance is calculated using the 

incident solar flux and the one-dimensional heat diffusion equa- 

tion ( Delbo et al., 2015 ). The thermal properties of a regolith-ice 

mixture are a combination of its components ( Siegler et al., 2012 ), 

and are allowed to change with depth and time. The heat equa- 

tion is solved with a Crank-Nicolson method with a nonlinear up- 

per radiation boundary condition, as described in the notes dis- 

tributed with the online version of the code ( Schörghofer, 2015 ). 

The model domain is a thin shell, typically 20 m thick, with zero 

heat flux at the lower boundary. The time scale for thermal equi- 

libration within this layer is short compared to the time scale for 

ice volume changes; it is also short compared to the age of the 

body. Changes of solar luminosity with time are taken into account 

( Gough, 1981 ). 

2.2. Ice loss 

A crucial component of the “fast” or asynchronous numerical 

method are time averaged quantities. Long-term averages, prac- 

tically averages over one whole orbit after thermal equilibrium 

has been reached, are denoted with overbars, e.g. ρ̄s v is the 

time-averaged saturation vapor density. For any non-zero temper- 

ature amplitude, ρ̄s v > ρs v ( ̄T ) . 

Ice is lost from a buried ice table to space. The vapor flux be- 

tween the surface and the ice table at depth z p is, 

J̄ dry = − ˆ D 

ρ̄s v (z p ) 

z p 
(1) 

where the effective diffusion coefficient ˆ D is given by 

z p 

ˆ D 

= 

∫ z p 

0 

dz 

D (z) 
(2) 

and the local diffusion coefficient D by 

D = ( 1 − f ) 
2 π
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where � is the porosity of the dry medium, v the mean ther- 

mal speed of molecules, τ = 2 tortuosity, and d the grain size 

( Schorghofer, 2008 ). When pores are filled to a fraction f with ice, 

the vapor flux is reduced by a constriction factor ( Hudson et al., 

2009 ). 

Where ice is present, the local vapor flux is governed by the 

saturation vapor pressure, 

J̄ P = −D 

∂ ρ̄s v 

∂z 
. (4) 

Ice is lost to the outside and vapor may also move downward. The 

equation for the motion of the ice table is 

σ (z p ) 
dz p 

dt 
= −J̄ dry (z p ) + J̄ P (z p ) (5) 

where J̄ P is the “pumping” contribution (often small) and σ is the 

(mass) density of ice. The ice table moves downward at a speed 

dz p / dt . 

Eqs. (1) and (5) lead to 

z p 
dz p 

dt 
= 

ˆ D 

σ
ρ̄s v (z p ) + J̄ P 

z p 

σ
. (6) 

Integration from 0 to �t B leads to a time stepping scheme, 

z 2 p (�t B ) − z 2 p (0) = 2 

∫ �t B 

0 

1 

σ

[
ˆ D ̄ρs v + z p ̄J P 

]
dt (7) 

To keep the problem linear, ρ̄s v , J̄ P , and 

ˆ D are evaluated at the be- 

ginning of the time step. The change from time step ( n ) to time 

step (n + 1) may be written as 

z (n +1) 
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√ 

z (n ) 
p 

2 + 

2 

σ

[
ˆ D ̄ρs v + z p ̄J P 

](n ) 
�t B (8) 

Evaluating σ at the beginning of the time step is potentially 

problematic if there is a rapid increase in relative σ , not at but 

below z p . The scheme proceeds by first evaluating σ at the com- 

putational grid point beneath z (n ) 
p , and if z p crosses more than one 

grid point, it subdivides �t B into smaller steps using the appropri- 

ate values for σ . Subdivision into two steps replaces (8) with 
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where σ ( n ) , ρ̄(n ) 
s v , and J̄ (n ) 

P 
are evaluated at the first grid point be- 

neath z (n ) 
p , and ( n ) may be replaced with (n + 1 / 2) . Not all quanti- 

ties on the right-hand side of the equation for the second half step 

are evaluated at (n + 1 / 2) for mere convenience. And no temper- 

atures are re-computed for the sub-steps; otherwise one may as 

well decrease �t B from the outset. 
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